No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Semiconductor nanowires are attractive nano- building blocks for microelectronics. However, the requirements for their manufacturing and application in the microelectronics industry are very demanding. Beyond compatibility with Si technology, full control on the characteristics of the grown wires (diameter, location, crystallinity, etc..), homogeneity on wafer –scale and reproducibility are essential. In this study we review critically important challenges for a controlled process of In –mediated growth of Si nanowires. First, we stress the importance of surface type for both particle catalysts and growth substrates. Both selection and preparation of such surfaces have large impact on growth, as they influence the initiation and the driving forces for the VLS growth mechanism. Moreover, wire characteristics such as morphology, crystalline quality and growth orientation appear more difficult to control when growing from particles with sizes below 40-50nm. This limitation arises as a result of both fundamental mechanisms and more specific constrains linked to the In-Si system.
A few perspectives are given for the achievement of a controlled Si nanowire growth in a Si –technology compatible fashion.