Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:05:12.810Z Has data issue: false hasContentIssue false

Indirect-Bonded Metallization of Aluminum Nitride

Published online by Cambridge University Press:  15 February 2011

M. Grant Norton*
Affiliation:
Washington State University, Department of Mechanical and Materials Engineering, Pullman, WA 99164
Get access

Abstract

The use of aluminum nitride (AIN) as a substrate and packaging material for microcircuit applications is of present interest due to its many advantageous physical properties. A limitation to the widespread use of AIN is the lack of an adequate metallization system. The most common method of achieving high-integrity metallized ceramics is through the use of indirect-bonded metallizations. A wide range of intermediate bonding materials are used, for example glasses, oxide mixtures, and active metals. In this paper, the indirect-bonded metallization of AIN will be reviewed and discussed. Requirements which must be considered in producing successful metallizations include; wetting of the substrate and the metal by the intermediate phase and the reactivity between the intermediate phase and the substrate. The reactions which occur in many of the systems considered can be predicted by examination of thermodynamic data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aldinger, F. and Werdecker, W., IEEE Trans. CHMT 7, 399 (1984)Google Scholar
2. Kurokawa, Y., Utsumi, K., Takamizawa, H., Kamata, T., and Noguchi, S., IEEE Trans., CHMT 8, 247 (1985)Google Scholar
3. Kuramoto, N., Taniguchi, H., and Aso, I., IEEE Trans., CHMT 9, 386 (1986)Google Scholar
4. Konsowski, S.G., Olenick, J.A., and Hall, R.D., Proceedings of the International Symposium on Microelectronics (International Society for Hybrid Microelectronics 1985) p. 213 Google Scholar
5. Tummala, R.R., in: Advances in Ceramics vol.26, edited by M.F., Yan (American Ceramic Society 1987) p. 3 Google Scholar
6. Kuramoto, N., Taniguchi, H., and Aso, I., Amer. Ceram. Soc. Bull. 68, 883 (1989)Google Scholar
7. Dettmer, E.S. and Charles, H.K. Jr., in: Advances in Ceramics vol.26, edited by Yan, M.F. (American Ceramic Society 1987) p. 87 Google Scholar
8. Marchant, D.D. and Nemecek, T.E., in: Advances in Ceramics vol.26, edited by Yan, M.F. (American Ceramic Society 1987) p. 19 Google Scholar
9. Suganuma, K., Okamoto, T., Koizumi, M., and Shimada, M., J. Amer. Ceram. Soc. 68, C334 (1985)Google Scholar
10. Klomp, J.T., Amer. Ceram. Soc. Bull. 51, 683 (1972)Google Scholar
11. Ruihle, M., Berger, K., and Mader, W., J. Micros. Spectrosc. Electron. 11, 163 (1986)Google Scholar
12. Vest, R.W., Amer. Ceram. Soc. Bull. 65, 631 (1986)Google Scholar
13. Hoffman, L.C., Amer. Ceram. Soc. Bull. 63, 572 (1984)Google Scholar
14. Larry, J.R., Rosenberg, R.M., and Uhler, R.O., IEEE Trans. CHMT 3, 211 (1980)Google Scholar
15. Norton, M.G., J. Mater. Sci. Lett. 9, 91 (1990)Google Scholar
16. Swalin, R.A., in: Thermodynamics of Solids 2nd. ed. (John Wiley and Sons, New York 1972) p. 116 Google Scholar
17. Luh, E.Y., Enloe, J.H., Dolhert, L.E., Lau, J.W., Kovacs, A.L., and Ehlert, M.R., IEEE Trans. CHMT 14, 538 (1991)Google Scholar
18. Mazurin, O.V., Streltsina, M.V., and Shvaiko-Shvaikovskaya, T.P., in: Handbook of Glass Data (Elsevier, Amsterdam 1983) and references therein.Google Scholar
19. Comeforo, J.E. and Hursh, R.K., J. Amer. Ceram. Soc. 35, 130 (1952)Google Scholar
20. Hitchcock, S.J., Carroll, N.T., and Nicholas, M.G., J. Mater. Sci. 16, 714 (1981)Google Scholar
21. Nicholas, M.G., Valentine, T.M., and Waite, M.J., J. Mater. Sci. 15, 2197 (1980)Google Scholar
22. Naidich, Yu., Prog. Surface Membrane Sci. 14, 353 (1981)CrossRefGoogle Scholar
23. Sangiorgi, R., Muolo, M.L., and Passarone, A., in: High Tech Ceramics edited by Vincenzini, P. (Elsevier, Amsterdam 1987) p. 415 Google Scholar
24. Rhee, S.K., J. Amer. Ceram. Soc. 53, 639 (1970)Google Scholar
25. Naka, M., Kubo, M., and Okamoto, I., J. Mater. Sci. Lett. 6, 965 (1987)Google Scholar
26. Rhee, S.K., J. Amer. Ceram. Soc. 53, 386 (1970)Google Scholar
27. Loehman, R.E., in: Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems edited by Pask, J.A. and Evans, A.G. (Plenum Press, New York 1981) p. 701 CrossRefGoogle Scholar
28. Mecartney, M.L., Sinclair, R., and Loehman, R.E., J. Amer. Ceram. Soc. 68, 472 (1985)CrossRefGoogle Scholar
29. Norton, M.G., J. Mater. Sci. 26, 2322 (1991)CrossRefGoogle Scholar
30. Norton, M.G., PhD thesis, University of London, 1989 Google Scholar
31. Vest, R.W., Conduction Mechanisms in Thick-Film Microcircuits, Final Technical Report, Purdue Research Foundation Grant Nos. DAHC-15-70-G7 and DAHC-15-73-G8, ARPA Order No. 1642 (1975)Google Scholar
32. Schonhorn, H., Frisch, H.L., and Kwei, T.W., J. Appl. Phys. 37, 4967 (1966)Google Scholar
33. Yokota, M., Moto-oka, N., Hara, A., and Mitani, H., Trans. Jpn. Inst. Met. 21, 645 (1980)Google Scholar
34. Pask, J.A., Amer. Ceram. Soc. Bull. 66, 1587 (1987)Google Scholar
35. Aksay, I.A., Hoge, C.E., and Pask, J.A., J. Phys. Chem. 78, 1178 (1974)Google Scholar
36. Machin, W.S. and Vest, R.W., in, Materials Science Research, edited by Palmour, H. III, Davis, R.F., and Hare, T.M., vol.11 (Plenum Press, New York 1976) p. 243 Google Scholar
37. Prudenziati, M., Morten, B., Moro, L., Ruffi, G., Argentino, E., and Jachetti, C., Proceedings 6th. European Hybrid Microelectonics Conf. (International Society for Hybrid Microelectronics-United Kingdom 1987) p. 95Google Scholar
38. Nakamura, Y., Intl. J. Hybrid Microelectron. 4, 168 (1981)Google Scholar
39. Prudenziati, M., Morten, B., and Brigatti, M.L., Active and Passive Elect. Comp. 12, 41 (1985)Google Scholar
40. Kurihara, Y., Takahashi, S., Yamada, K., Endoh, T., and Kanai, K., IEEE Trans. CHMT 14, 199 (1991)Google Scholar
41. Cox, C.V., Hutfless, M.J., Allison, K., and Hankey, D.L., Intl. J. Hybrid Microelectron. 10, 8 (1987)Google Scholar
42. Loehman, R.E. and Tomsia, A.P., Amer. Ceram. Soc. Bull. 67, 375 (1988)Google Scholar
43. Sakka, S., Ann. Rev. Mater. Sci. 16, 29 (1986)Google Scholar
44. Loehman, R.E., in: Treatise on Materials Science and Technology vol.26 Glass IV edited by Tomozawa, M. and Doremus, R.H. (Academic Press, London 1985)Google Scholar
45. Hampshire, S., Drew, R.A.L., and Jack, K.H., Phys. Chem. Glasses 26, 182 (1985)Google Scholar
46. Messier, D.R., Revue de Chimie Minerale 22, 518 (1985)Google Scholar
47. Loehman, R.E., J. Non-Cryst. Solids 56, 123 (1983)Google Scholar
48. Loehman, R.E., J. Amer. Ceram. Soc. 62, 491 (1979)Google Scholar
49. Frischat, G.H. and Shrimpf, C., J. Amer. Ceram. Soc. 63, 714 (1980)Google Scholar
50. Jankowski, P.E. and Risbud, S.H., J. Amer. Ceram. Soc. 65, C29 (1982)Google Scholar
51. Luping, Y., Quanxin, F., Guanqing, H., and Jiazhi, L., J. Non-Cryst. Solids 56, 167 (1983)CrossRefGoogle Scholar
52. Frischat, G.H., Krause, W., and Hubenthal, H., J. Amer. Ceram. Soc. 67 CIO (1984)Google Scholar
53. Unuma, H. and Sakka, S., J. Mater. Sci. Lett. 6, 996 (1987)Google Scholar
54. Burckhardt, H.-G., Vavra, H., and Norton, M.G., Proceedings of the 7th. European Hybrid Microelectronics Conf. (International Society for Hybrid Microelectronics-Germany 1989)Google Scholar
55. Hayduk, E.A. Jr., Solid State Technol. 1985, 321Google Scholar
56. Mattox, D.M. and Smith, H.D., Amer. Ceram. Soc. Bull. 64, 1363 (1985)Google Scholar
57. Twentyman, M.E., J. Mater. Sci. 10, 765 (1975)Google Scholar
58. Westwood, A.D. and Notis, M.R., Mater. Res. Soc. Symp. Proc. 108, 331 (1988)Google Scholar
59. Westwood, A.D. and Notis, M.R., Mater. Res. Soc. Symp. Proc. 154, 479 (1989)Google Scholar
60. Werdecker, W., Proceedings 5th. European Hybrid Microelectonics Conf. (International Society for Hybrid Microelectronics-Italy 1985) p. 472Google Scholar
61. Loehman, R.E., Amer. Ceram. Soc. Bull. 68, 891 (1989)Google Scholar
62. Yost, F.G. and Romig, A.D. Jr., Mater. Res. Soc. Symp. Proc. 108, 385 (1988)Google Scholar
63. Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., in: Introduction to Ceramics, 2nd. ed. (John Wiley and Sons, New York 1976) p. 208 Google Scholar
64. Nicholas, M.G. and Crispin, R.M., Ceram. Eng. Sci. Proc. 10, 1602 (1989)Google Scholar
65. Mitzuhara, H. and Huebel, E., Weld. J. 65, 43 (1986)Google Scholar
66. Nicholas, M.G., Br. Ceram. Trans. J., 85, 144 (1986)Google Scholar
67. Tomsia, A., Feipeng, Z., and Pask, J.A., Amer. Ceram. Soc. Bull. 63, 473 (1984)Google Scholar
68. Tomsia, A.P., Pask, J.A., and Loehman, R.E., Ceram. Eng. Sci. Proc. 10, 1631 (1989)Google Scholar
69. Kurihara, Y., Takahashi, S., Ogihara, S., and Kurosu, T., IEEE Trans CHMT 15, 361 (1992)Google Scholar
70. Xian, A.-P., Xue, X.M., and Si, Z.Y., J. Mater. Sci. Lett. 10, 246 (1991)Google Scholar
71. Xian, A.-P., J. Mater. Sci. 28, 1019 (1993)CrossRefGoogle Scholar
72. Brow, R.K., Loehman, R.E., Tomsia, A.P., and Pask, J.A., in: Advances in Ceramics vol.26 edited by Yan, M.F. (American Ceramic Society 1987)Google Scholar
73. Bondley, R.J., Electronics, 20, 97 (1947)Google Scholar
74. Nicholas, M.G. and Mortimer, D.A., Mater. Sci. and Technol. 1, 657 (1985)CrossRefGoogle Scholar
75. Iwamoto, N., Makino, Y., and Miyata, H., Ceram. Eng. Sci. Proc. 10, 1761 (1989)Google Scholar
76. Santella, M.L., Adv. Ceram. Mater. 3, 457 (1988)CrossRefGoogle Scholar
77. Norton, M.G., Kajda, J.M., and Steele, B.C.H., J. Mater. Res. 5, 2172 (1990)Google Scholar
78. Blocher, J.M. Jr., in: High-Temperature Materials and Technology edited by Campbell, I.E. and Sherwood, E.M. (John Wiley and Sons, New York 1967)Google Scholar
79. Kubaschewski, O. and Evans, E.L.,in: Metallurgical Thermodynamics 3rd ed. (Pergamon Press, New York 1958)Google Scholar
80. Beyers, R., Sinclair, R., and Thomas, M.E., J. Vac. Sci. Technol. B2, 781 (1984)Google Scholar
81. Westwood, A.D. and Notis, M.R., Advances in Ceramics, 26, 171 (1989)Google Scholar
82. Carim, A.H., J. Mater. Res. 4, 1456 (1989)Google Scholar
83. McDermid, J.R. and Drew, R.A.L., J. Amer. Ceram. Soc. 74, 1855 (1991)Google Scholar
84. Klomp, J.T., van de Ven, A.J.C., and Monneraye, M., Coil de Phys. 51, CI-745 (1990)Google Scholar
85. Burgess, J.F., Neugebauer, C.A., and Flanagan, G., J. Electrochem. Soc. 122, 688 (1975)Google Scholar
86. Kluge-Weiss, P. and Gobrecht, J., Mater. Res. Soc. Symp. Proc. 40, 399 (1985)CrossRefGoogle Scholar
87. Takahashi, T., Iwase, N., Tsuge, A., and Nagata, M., in: Advances in Ceramics vol.26 edited by Yan, M.F. (American Ceramic Society 1987) p. 159 Google Scholar
88. Iwase, N., Anzai, K., Shinozaki, K., Hirao, O., Thanh, T.D., and Sugiura, Y., IEEE Trans. CHMT 8, 253 (1985)Google Scholar
89. Chiang, W.L., Greenhut, V.A., Shanefield, D.J., Salvati, I., and Moore, R.L., Ceram. Eng. Sci. Proc. 12, 2105 (1991).Google Scholar
90. Hitch, T.T., J. Electron. Mater. 3, 553 (1974)Google Scholar
91. Becher, P.F. and Murday, J.S., J. Mater. Sci. 12, 1095 (1977)Google Scholar
92. Becher, P.F. and Newell, W.L., J. Mater. Sci. 12, 90 (1977)Google Scholar
93. Osaka, T., Nagata, H., Nakajima, E., Koiwa, I., and Utsumi, K., J. Electrochem. Soc. 133, 2345 (1986)Google Scholar
94. Osaka, T., Asada, T., Nakajima, E., and Koiwa, I., J. Electrochem. Soc. 135, 2578 (1988)Google Scholar
95. Mohammed, A.A. and Corbett, S.J., Proceedings of the International Symposium on Microelectronics (International Society for Hybrid Microelectronics 1985) p. 218 Google Scholar
96. Esrom, H., Mater. Res. Soc. Symp. Proc. 204, 457 (1991)Google Scholar
97. Pedraza, A.J., Godbole, M.J., DeSilva, M.J., and Lowndes, D.H. (1993 unpublished)Google Scholar
98. Jean, J.-H. and Gupta, T.K., J. Mater. Res. 7, 2514 (1992)Google Scholar
99. Ohuchi, F.S., French, R.H., and Kasowski, R.V., J. Appl. Phys. 62, 2286 (1987)Google Scholar
100. Ohuchi, F.S. and Kohyama, M., J. Amer. Ceram. Soc. 74, 1163 (1991)Google Scholar
101. Norton, M.G., Kotula, P.G., and Carter, C.B., J. Appl. Phys. 70, 2871 (1991)Google Scholar
102. Ohuchi, F.S. and Russell, P.E., J. Vac. Sci. Technol. A 5, 1630 (1987)Google Scholar
103. Li, X. and Tansley, T.L., J. Appl. Phys. 68, 5369 (1990)Google Scholar
104. Norton, M.G., Kotula, P.G., Li, J., McKernan, S., Cracknell, K.P.B., Carter, C.B., and Mayer, J.W., Mater. Res. Soc. Symp. Proc. 226 (1991)Google Scholar
105. McKernan, S., Norton, M.G., and Carter, C.B., Proceedings of the XII International Congress for Electron Microscopy, 350 (1990)Google Scholar
106. Norton, M.G., McKernan, S., and Carter, C.B., Mater. Res. Soc. Symp. 225 (1991)Google Scholar