Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T05:34:51.409Z Has data issue: false hasContentIssue false

In Situ Measurements of Stress Relaxation During Strained Layer Heteroepitaxy

Published online by Cambridge University Press:  10 February 2011

E. Chason
Affiliation:
Brown University, Providence, RI 02912
J. Yin
Affiliation:
Brown University, Providence, RI 02912
K. Tetz
Affiliation:
Brown University, Providence, RI 02912
R. Beresford
Affiliation:
Brown University, Providence, RI 02912
L. B. Freund
Affiliation:
Brown University, Providence, RI 02912
M. Ujue Gonzalez
Affiliation:
Instituto de Microelectronica (CNM-CSIC), Madrid, Spain
J. A. Floro
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We present real-time measurements of stress relaxation kinetics during epitaxial growth obtained using a wafer-curvature-based technique optimized for in situ studies. Depending on the temperature and misfit strain, different mechanisms of stress relaxation are observed. In heterolayers of InGaAs grown on GaAs (001) substrates, relaxation occurs by a dislocationmediated mechanism. In SiGe layers grown on Si (001) substrates at elevated temperature, relaxation occurs by the formation of islands on the surface. These islands elastically relax misfit stress without the introduction of dislocations at the island-substrate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
2.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 29, 273 (1975).Google Scholar
3.Dunstan, D.J., J. of Mater. Sci.: Mater. In Electronics 8, 337 (1997).Google Scholar
4.Houghton, D.C., Perovic, D.D., Baribeau, J.-M., Weatherly, G.C., J. Appl. Phys. 67, 1850 (1990).Google Scholar
5.Whaley, G.J. and Cohen, P.I., Appl. Phys. Lett. 57, 144 (1990).Google Scholar
6.Mirecki-Millunchick, J. and Bamett, S.A., Appl. Phys. Lett. 65, 1136 (1994).Google Scholar
7.Doerner, M.F. and Nix, W.D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).Google Scholar
8.Flinn, P.A., Gardner, D.S., Nix, W.D., IEEE Trans. Electron Devices ED- 34, 689 (1987).Google Scholar
9.Beresford, R., Yin, J., Tetz, K. and Chason, E., J. Vac. Sci. Technol. A, in press.Google Scholar
10.Dodson, B.W., Tsao, J.Y., Appl. Phys. Lett. 51, 1325 (1987).Google Scholar
11. Robert Hull, private comunication.Google Scholar
12.Floro, J.A., Chason, E., Twesten, R.D., Hwang, R.Q. and Freund, L.B., Phys. Rev. Lett. 79, 3946 (1997).Google Scholar
13.Floro, J.A., Lucadomo, G.A., Chason, E., Freund, L.B., Sinclair, M., Twesten, R.D. and Hwang, R.Q., Phys. Rev. Lett. 80, 4717 (1998).Google Scholar
14.Floro, J.A., Chason, E., Freund, L.B., Twesten, R.D., Hwang, R.Q. and Lucadomo, G.A., Phys. Rev. B 59, 1990 (1999-I).Google Scholar
15.Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., Lagally, M.G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar