Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T09:42:10.707Z Has data issue: false hasContentIssue false

In situ high temperature X-ray diffraction study of the kinetics of phase separation in the uranium-plutonium mixed oxide (U0.55Pu0.45)O2-x

Published online by Cambridge University Press:  22 January 2014

Romain VAUCHY
Affiliation:
CEA Cadarache, CEA, DEN, DEC, SPUA, Cadarache F-13108 Saint-Paul-Lez-Durance, France Science et Ingénierie des Matériaux et Procédés (SIMaP, associé au CNRS UMR 5266 – UJF/INP-Grenoble), Domaine Universitaire, 1130 rue de la piscine, BP 75, F-38402 Saint Martin d’Hères, France
Renaud.C. BELIN*
Affiliation:
CEA Cadarache, CEA, DEN, DEC, SPUA, Cadarache F-13108 Saint-Paul-Lez-Durance, France
Anne-Charlotte ROBISSON
Affiliation:
CEA Cadarache, CEA, DEN, DEC, SPUA, Cadarache F-13108 Saint-Paul-Lez-Durance, France
Fiqiri HODAJ
Affiliation:
Science et Ingénierie des Matériaux et Procédés (SIMaP, associé au CNRS UMR 5266 – UJF/INP-Grenoble), Domaine Universitaire, 1130 rue de la piscine, BP 75, F-38402 Saint Martin d’Hères, France
*
*Corresponding author at CEA, DEN, DEC, SPUA, Cadarache F-13108 Saint-Paul-Lez-Durance, France. Phone: +334 42 25 49 54, Fax: +334 42 25 47 17, E-mail: [email protected]
Get access

Abstract

Uranium-plutonium mixed oxides incorporating high amounts of plutonium are considered for future nuclear reactors. For plutonium content higher than 20%, a phase separation occurs, depending on the temperature and on the oxygen stoichiometry. This phase separation phenomenon is still not precisely described, especially at high plutonium content. Here, using an original in situ fast X-ray diffraction device dedicated to radioactive materials, we evidenced a phase separation occurring during rapid cooling from 1773 K to room temperature at the rate of 0.05 and 2 K per second for a (U0.55Pu0.45)O2-x compound under a reducing atmosphere. The results show that the cooling rate does not impact the lattice parameters of the obtained phases at room temperature but their fraction. In addition to their obvious fundamental interest, these results are of utmost importance in the prospect of using uranium-plutonium mixed oxides with high plutonium content as nuclear fuels.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Russell, L.E., Brett, N.H., Harrison, J.D. and Williams, J., J. Nucl. Mater. 5, 216227, (1962).CrossRefGoogle Scholar
Brett, N.H. and Russell, L.E., Trans. Brit. Ceram. Soc, 62, 97118, (1962).Google Scholar
Markin, T.L. and Street, R.S., J. Inorg. Nucl. Chem. 29, 22652280, (1967).CrossRefGoogle Scholar
Markin, T.L. and McIver, E.J., Plutonium 1965, Chapman and Hall, London, 845857, (1967).Google Scholar
Sari, C., Benedict, U. and Blank, H., Thermo. Nucl. Mater., 587611, (1968).Google Scholar
Sari, C., Benedict, U. and Blank, H., J. Nucl. Mater. 35, 267277, (1970).CrossRefGoogle Scholar
Dean, G., Boivineau, J.C., Chereau, P. and Marcon, J.P., Plutonium and Other Actinides, Plutonium 1970, 753761, (1970).Google Scholar
Truphémus, T., Belin, R.C., Richaud, J.C. and Rogez, J., Proc. Chem. 7, 521527, (2012).CrossRefGoogle Scholar
Truphémus, T. et al. ., J. Nucl. Mater. 432, 378387, (2013).CrossRefGoogle Scholar
Guéneau, C. et al. ., J. Nucl. Mater. 419, 145167, (2011).CrossRefGoogle Scholar
Lukas, H.L., Fries, S.G. and Sundman, B., Comp. Thermo., The Calphad Method, Cambridge Univ. Press, (2007).CrossRefGoogle Scholar
Duriez, C., Alessandri, J.P., Gervais, T. and Philipponneau, Y., J. Nucl. Mater. 277, 143158, (2000).CrossRefGoogle Scholar
Inoue, M., J. Nucl. Mater. 282, 186195, (2000).CrossRefGoogle Scholar
Vasudeva Rao, P.R., Anthonysamy, S., Krishnaiah, M.V. and Chandramouli, V., J. Nucl. Mater. 348, 329334, (2006).CrossRefGoogle Scholar
Morimoto, K., Kato, M., Ogasawara, M. and Kashimura, M., J. Nucl. Mater. 374, 378385, (2008).CrossRefGoogle Scholar
Besmann, T.M. and Lindemer, T.B., J. Nucl. Mater. 130, 489504, (1985).CrossRefGoogle Scholar
Chollet, M., Belin, R.C., Richaud, J.C., Reynaud, M., Adenot, F., Inorg. Chem. 52, 5, 25192525, (2013).CrossRefGoogle Scholar
Lebreton, F., Belin, R.C., Delahaye, T. and Blanchart, P., J. Solid State Chem. 196, 217224, (2012).CrossRefGoogle Scholar
Lebreton, F., Belin, R.C., Prieur, D., Delahaye, T. and Blanchart, P., Inorg. Chem. 51, 17, 93699375, (2012).CrossRefGoogle Scholar
Dubrovinsky, L.S. and Saxena, S.K., Phys. and Chem. of Minerals, 24, 547550, (1997).CrossRefGoogle Scholar
Wang, K. and Reeber, R.R., Mat. Science and Engineering, 23-3, 101137, (1998).CrossRefGoogle Scholar
Pawley, G.S., J. Appl. Crystallogr., 14, 357, (1981).CrossRefGoogle Scholar
Rietveld, H.M., J. Appl. Crystallogr., 2, 6571, (1969).CrossRefGoogle Scholar
Cheary, R.W. and Coelho, A., J. Appl. Crystallogr, 25, 109, (1992).CrossRefGoogle Scholar
"TOPAS V4: General profile and structure analysis software for powder diffraction data. User’s manual", Bruker AXS, Karlsruhe, Germany, (2005).Google Scholar