Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:20:38.495Z Has data issue: false hasContentIssue false

In situ Characterization of UO2 Microstructure Changes During an Annealing Test in an Environmental Scanning Electron Microscope

Published online by Cambridge University Press:  31 January 2011

Mathieu Marcet
Affiliation:
[email protected], Commissariat à l’Energie Atomique, Centre de Cadarache, Saint-Paul-lez-Durance, France
Yves Pontillon
Affiliation:
[email protected], Commissariat à l’Energie Atomique, Centre de Cadarache, Saint-Paul-lez-Durance, France
Lionel Desgranges
Affiliation:
[email protected], Commissariat à l’Energie Atomique, Centre de Cadarache, Saint-Paul-lez-Durance, France
David Simeone
Affiliation:
[email protected], CEA, DEN/DANS/DMN/SRMA/LA2M-MFE, Gif sur Yvette, 91191, France
Isabelle Aubrun
Affiliation:
[email protected], Commissariat à l’Energie Atomique, Centre de Cadarache, Saint-Paul-lez-Durance, France
Isabelle Felines
Affiliation:
[email protected], Commissariat à l’Energie Atomique, Centre de Cadarache, Saint-Paul-lez-Durance, France
Laurent Brunaud
Affiliation:
[email protected], Commissariat à l’Energie Atomique, Centre de Cadarache, Saint-Paul-lez-Durance, France
Get access

Abstract

A 1 μg High Burn Up Structure (HBS) fragment was extracted from a UO2 fuel pellet irradiated for 7 cycles in a EDF Pressurised Water Reactor (PWR). In situ examinations were performed with an Environmental Scanning Electron Microscope (ESEM) in order to characterize UO2 microstructure evolution during a temperature ramp up to 1,600K. The results are compared to previously published data on HBS annealing tests performed in a Knudsen cell where observed burst releases are explained as sample cracking during the experimental sequence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matzke, Hj. and Spino, J. Journal of Nuclear Materials 248, 170179(1997).Google Scholar
2. Matzke, Hj. Journal of Nuclear Materials 189, 141148(1992).Google Scholar
3. Stehle, H. Journal of Nuclear Materials 153, 315(1988).Google Scholar
4. Spino, J. et al. , Journal of Nuclear Materials 231, 179190(1996).Google Scholar
5. Pontillon, Y. et al. , Proceedings of the 2004 Water Reactor Fuel Performance Meeting, (Orlando, USA, 2004).Google Scholar
6. Pontillon, Y. et al. , European Working Group “Hot Laboratories and Remote Handling”, Plenary Meeting, (Petten, the Netherlands, 2005).Google Scholar
7. Pontillon, Y. et al. , 2008 Water Reactor Fuel Performance Meeting, (Seoul, Korea, 2008).Google Scholar
8. Hiernaut, J.P. et al. , Journal of Nuclear Materials 377, 313324(2008).Google Scholar
9. Marcet, M. et al. , Proceedings of Top Fuel 2009, (Paris, France, 2009).Google Scholar