Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:26:11.038Z Has data issue: false hasContentIssue false

Implantation and Activation of High Concentrations of Boron and Phosphorus in Germanium

Published online by Cambridge University Press:  01 February 2011

Yong Seok Suh
Affiliation:
[email protected], New Jersey Institute of Technology, Physics Department, University Heights, Newark, New Jersey, 07102, United States, 973-596-3680, 973-596-8369
Malcolm S. Carroll
Affiliation:
[email protected], Sandia National Laboratories, United States
Roland A. Levy
Affiliation:
[email protected], New Jersey Institute of Technology, Physics Department, United States
Gabriele Bisognin
Affiliation:
[email protected], Universita di Padova, MATIS-INFM and Dipartimento di Fisica, Italy
Davide De Salvador
Affiliation:
[email protected], Universita di Padova, MATIS-INFM and Dipartimento di Fisica, Italy
M. Alper Sahiner
Affiliation:
[email protected], Seton Hall University, Department of Physics, United States
Get access

Abstract

The effect of increasing boron or phosphorus implant dose (i.e., 5×1013-5×1016 cm−2) and subsequent annealing (400-600°C for 3 hrs in N2) on the activation, diffusion and structure of germanium is studied in this work. The peak concentration of implant dose is ∼ 2×1021 cm−3. Secondary ion mass spectrometry (SIMS), spreading resistance profiling (SRP), high resolution X-ray diffraction (HRXRD), X-ray absorption fine structure (XAFS), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA) were used to characterize the implant and activation behavior. Boron is found to have a high solid solubility (i.e., > 2×1020 cm−3), even immediately after implant; while in contrast, phosphorus is limited to ∼ 1–2×1019 cm−3. Diffusion of phosphorus is also extremely extrinsic, while boron is practically immobile.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chui, C. O., Kim, H., Chi, D., Triplett, B. B., McIntyre, P. C., and Saraswat, K. C., IEDM Tech. Dig., 437 (2002).Google Scholar
2. Shang, H., Okorn-Schmidt, H., Chan, K. K., Copel, M., Ott, J. A., Kozlowski, P. M., Steen, S. E., Cordes, S. A., Wong, H. -S. P., Jones, E. C., and Haensch, W. E., IEDM Tech. Dig., 441 (2002).Google Scholar
3. Jones, R. E., Thomas, S. G., Bharatan, S., Thoma, R., Jasper, C., Zirkle, T., Edwards, N. V., Liu, R., Wang, X. D., Xie, Q., Rosenblad, C., Ramm, J., Isella, G., von Känel, H., Oh, J., and Campbell, J. C., IEDM Tech. Dig., 793 (2002).Google Scholar
4. Masini, G., Colace, L., and Assanto, G., Mater. Sci. Eng. B 89, 2 (2002).Google Scholar
5. Suh, Y. S., Carroll, M. S., Levy, R. A., Bisognin, G., Salvador, D. D., Sahiner, M. A., and King, C. A., IEEE Trans. Electron Devices 52, 2416 (2005).Google Scholar
6. Sze, S. M. and Irvin, J. C., Solid-State Electron 11, 599 (1968).Google Scholar
7. Cuttriss, D. B., Bell Syst. Tech. J. 40, 509 (1961).Google Scholar
8. Jones, K. S. and Haller, E. E., Appl, J.. Phys. 61, 2469 (1987).Google Scholar
9. Uppal, S., Willoughby, A. F. W., Bonar, J. M., Evans, A. G. R., Cowern, N. E. B., Morris, R., and Dowsett, M. G., J. Appl. Phys. 90, 4293 (2001).Google Scholar
10. Sahiner, M. A., Ansari, P., Carroll, M. S., King, C. A., Suh, Y. S., Levy, R. A., Buyuklimanli, T., and Croft, M., Mater. Res. Soc. Symp. Proc. 864, E7.8.1 (2005).Google Scholar
11. De Salvador, D., Tormen, M., Berti, M., Drigo, A. V., Romanato, F., Boscherini, F., Stangl, J., Zerlauth, S., Bauer, G., Colombo, L., and Mobilio, S., Phys. Rev. B 63, 045414 (2001).Google Scholar
12. Sze, S. M., VLSI Technology, 2nd ed. (Mcgraw-Hill, New York, 1988), p. 358.Google Scholar
13. Chui, C. O., Gopalakrishnan, K., Griffin, P. B., Plummer, J. D., and Sarawat, K. C., Appl. Phys. Lett. 83, 3275 (2003).Google Scholar
14. Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M., and Knoell, R. V., Nucl. Instr. and Methods B 19/20, 435 (1987).Google Scholar