Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T08:39:47.318Z Has data issue: false hasContentIssue false

Implantation Activation Annealing of Si-Implanted Gallium Nitride at Temperatures > 1100 °C

Published online by Cambridge University Press:  10 February 2011

J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
R. M. Biefeld
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
S. B. Van Deusen
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
W. R. Wampler
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
J. S. Williams
Affiliation:
Dept. of Electronic Materials Engineering, Australian National University, Canberra, 0200, Australia
H. H. Tan
Affiliation:
Dept. of Electronic Materials Engineering, Australian National University, Canberra, 0200, Australia
R. J. Karlicek Jr
Affiliation:
Emcore Corp., Somerset, NJ 08873
R. A. Stall
Affiliation:
Emcore Corp., Somerset, NJ 08873
Get access

Abstract

The activation annealing of Si-implanted GaN is reported for temperatures from 1100 to 1400 °C. Although previous work has shown that Si-implanted GaN can be activated by a rapid thermal annealing at ∼1100 °C, it was also shown that significant damage remained in the crystal. Therefore, both AlN-encapsulated and uncapped Si-implanted GaN samples were annealed in a metal organic chemical vapor deposition system in a N2/NH3 ambient to further assess the annealing process. Electrical Hall characterization shows increases in carrier density and mobility for annealing up to 1300 °C before degrading at 1400 °C due to decomposition of the GaN epilayer. Rutherford backscattering spectra show that the high annealing temperatures reduce the implantation induced damage profile but do not completely restore the as-grown crystallinity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M. A., Bhattarai, A., Kuznia, J. N., and Olson, D. T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
2. Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Elect. Lett. 30, 1248 (1994).Google Scholar
3. Nguyen, N. X., Keller, B. P., Keller, S., Wu, Y.-F., Lee, M., Nguyen, C., Denbaars, S. P., Mishra, U. K., and Grider, D., Electron. Lett. 33, 334 (1997).Google Scholar
4. Zolper, J. C, Shul, R. J., Baca, A. G., Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68 2273(1996).Google Scholar
5. Zolper, J. C., Pearton, S. J., Williams, J. S., Tan, H. H., and Stall, R. A., Materials Research Society, Fall 1996, Symposium N, vol. 449 (MRS, Pittsburgh, PA, in press).Google Scholar
6. Zolper, J. C. and Shul, R. J., MRS Bulletin, 22, 36 (1997).Google Scholar
7. Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Zolper, J. C., Yuan, C., Stall, R. A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
8. Zolper, J. C., Hagerott Crawford, M., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Yuan, C., and Stall, R. A., J. Electron. Mat. 25 839 (1996).Google Scholar
9. Zolper, J. C, Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68 1945 (1996).Google Scholar
10. Yuan, C., Salagaj, T., Gurary, A., Zawadzki, P., Chern, C. S., Kroll, W., Stall, R. A., Li, Y., Schurman, M., Hwang, C.-Y., Mayo, W. E., Lu, Y., Pearton, S. J., Krishnankutty, S., and Kolbas, R. M., J. Electrochem. Soc. 142, L163 (1995).Google Scholar
11. Zolper, J. C., Rieger, D. J., Baca, A. G., Pearton, S. J., Lee, J. W., and Stall, R. A., Appl. Phys. Lett. 69, 538(1996).Google Scholar
12. Ziegler, J. F., Biersack, J. P., Littmark, U., The Stopping and Range of Ions in Solids, Vol. 1, (Pergamon Press, New York, 1985).Google Scholar
13. Mileham, J. R., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Shul, R. J., and Kilcoyne, S. P., Appl. Phys. Lett. 67, 1119 (1995).Google Scholar
14. Vartuli, C. B., Pearton, S. J., Lee, J. W., Abernathy, C. R., MacKenzie, J. D., Zolper, J. C, Shul, R. J., and Ren, F., J. Electrochem. Soc. 143, 3681 (1996).Google Scholar
15. Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 69, 2364(1996).Google Scholar
16. Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., and Yuan, C., Proc. 1st Symp. on III-V Nitride Materials and Processes, Electrochemical Society, vol. 96–11, 142 (1996).Google Scholar