Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T03:19:01.909Z Has data issue: false hasContentIssue false

Implant Enhanced Diffusion of Boron in Silicon Germanium

Published online by Cambridge University Press:  15 February 2011

Wingra T. C. Fang
Affiliation:
Stanford University, Department of Electrical Engineering, Stanford, CA 94305
Peter B. Griffin
Affiliation:
Stanford University, Department of Electrical Engineering, Stanford, CA 94305
James D. Plummer
Affiliation:
Stanford University, Department of Electrical Engineering, Stanford, CA 94305
Get access

Abstract

In this work, the inert and implant enhanced diffusion of boron in silicon germanium (SiGe) was studied by means of a boron box-shaped profile grown inside Si0.905 Ge0.095 or Si0.785Ge0.22 layers. The SiGe layers were capped with silicon for stability and to ensure no lattice damage in the SiGe layers during the implant. Assuming boron moves by interstitial-mediated diffusion in SiGe, the results suggest that decreases in the mobile boron diffusivity, not decreases in interstitial concentration, cause much of the decrease in average boron diffusivity with increasing Ge fraction. Implant enhancements decreased as the germanium percentages increased, possibly indicating higher interstitial concentrations in SiGe than in Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., Jacowitz, R. D., and Kamins, T. I., Appl. Phys, Let., 62, 612 (1993).Google Scholar
[2] Moriya, N., King, C. A., Feldman, L. C., Luftman, H. S., Green, M. L., Bevk, J., and Weir, B. E. in Semiconductor Heterostructures for Photonic and Electronic Applications, edited by Tu, C. W., Houghton, D. C., and Tung, R. T., (Mater. Res. Soc. Proc 281, Pittsburg, PA, 1993) pp. 427432.Google Scholar
[3] Law, M. E., Rafferty, C. S., and Dutton, R. W., “SUPREM IV User's Manual”, Stanford University, December 1988.Google Scholar
[41 Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. of Mod. Phys., 61, 289 (1989).Google Scholar
[5] Robinson, H. G., Deal, M. D., Amaratunga, G., Griffin, P. B., Stevenson, D. A., and Plummer, J. D.. J. Appl. Phys., 71, 2615 (1992).Google Scholar
[6] Law, M. E. and Pfiester, J. R., IEEE Trans. Electron. Devices, 38, 278 (1991).Google Scholar
[7] Mathiot, D. and Pfister, J. C., J. Appl. Phys., 55, 518 (1984).Google Scholar
[8] Gossmann, H. J., Vredenberg, A. M., Raggerty, C.S., Luftman, H. S., Unterwald, F. C., Jacobson, D. C., Boone, T., and Poate, J. M.. J. Appl. Phys., 74, 3150 (1993).Google Scholar
[9] Chao, H., Griffin, P. B., Plummer, J. D. (private communication).Google Scholar
[10] Fang, W. T., Griffin, P. B., Plummer, J. D. (private communication).Google Scholar
[11] Antonelli, A. and Bemholc, J., Phys. Rev. B, 40, 10643 (1989).Google Scholar
[12] Antonelli, A. and Bemholc, J.. in Impurities. Defects, and Diffusion in Semiconductors: Bulk and Layered Structures, edited by Wolford, D. I., Bemholc, J., and Hailer, E. E. (Mater. Res. Soc. Proc. 163, Pittsburgh, PA, 1990) pp. 523528.Google Scholar
[13] Cowerm, N. E. B., Zalm, P. C., Sluis, P. van der, Gravesteijn, D. J., and Boer, W. B. de, Phys. Rev. Lett., 72, 2585 (1994).Google Scholar
[14] Borg, R. J., An introduction to solid state diffusion. (Academic Press, San Diego, 1988), pp. 195201.Google Scholar
[15] Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D.. Appl. Phys. Lett., 66, 580 (1995).Google Scholar