Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T01:16:28.828Z Has data issue: false hasContentIssue false

Impact Damage and Strength Degradation of Fused Silica

Published online by Cambridge University Press:  10 February 2011

J. E. Ritter
Affiliation:
Mechanical and Industrial Engineering Department, University of Massachusetts, Amherst, MA 01003-2210, [email protected]
Get access

Abstract

Fused silica in service can suffer from strength degradation due to a localized contact load or particle impact that can cause cracking about the indentation or impact site. This cracking generally consists of radial, lateral, and cone cracks and is independent of whether the indenter or particle is sharp or blunt or whether the impact is subsonic or hypervelocity. The impact site is generally characterized by a shallow pit surrounded by an array of microcracks. The pit is formed by the fragmentation of the glass due to the intersecting radial, lateral, and cone cracks. With either static indentation or particle impact, it is the radial crack that controls strength degradation. The applicability of indentation fracture mechanics in predicting this strength degradation is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cook, R. F. and Pharr, G. M., J. Am. Ceram. Soc., 73, 787 (1990).10.1111/j.1151-2916.1990.tb05119.xGoogle Scholar
2. Chaudhri, M. M., in Strength of Inorganic Glass, edited by Kurkjian, C. R. (Plenum Press, New York, 1985) pp. 87113.Google Scholar
3. Chaudhri, M. M. and Kurkjian, C. R., J. Am. Ceram. Soc., 69, 404 (1986).10.1111/j.1151-2916.1986.tb04769.xGoogle Scholar
4. Flaherty, R. E., J. Spacecraft, 7, 319 (1980).10.2514/3.29927Google Scholar
5. Lankford, J. and Edelstein, K., Ceramic Engin. and Sci. Proc., 18, 653 (1997).10.1002/9780470294437.ch71Google Scholar
6. Lawn, B. R., Fracture of Brittle Solids, 2nd Ed. (Cambridge University Press, Cambridge, U.K., 1993).10.1017/CBO9780511623127Google Scholar
7. Ritter, J. E., in Fracture Mechanics of Ceramics, Vol.10, edited by Bradt, R. C., Hasselman, D. P. H., Munz, D., Sakai, M., and Shevchenko, Y.Ya. (Plenum Press, New York, 1992) pp. 555578.10.1007/978-1-4615-3348-1_36Google Scholar
8. Edelstein, K. S., in Proc. 43rd Congress of the International Astronautical Federation (Washington, D. C., 1992) pp. 110.Google Scholar
9. Berthoud, L. and Maderville, J. C., J. Mater. Sci., 32, 3043 (1997).10.1023/A:1018621911362Google Scholar
10. Zhu, G-Q., Ritter, J. E., and Jakus, K., Ceram. Engin. and Sci. Proc., 18, 447 (1997).10.1002/9780470294437.ch50Google Scholar
11. Cook, R. F., personal communication, 1998.Google Scholar
12. Cook, R. F. in Methods for Assessing the Structural Reliability of Structural Materials, edited by Freiman, S. W. (ASTM STP 844, Philadelphia, 1984) pp. 2242.Google Scholar
13. Ritter, J. E., Jakus, K., and Panat, R. P., unpublished data, 1998.Google Scholar
14. Ritter, J. E., Maloney, F. M., and Jakus, K., in Fracture Mechanics of Ceramics, Vol.8, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1986) pp.213223.10.1007/978-1-4615-7026-4_17Google Scholar
15. Widjaja, S., Ritter, J. E., Jakus, K., J. Mater. Sci., 31, 2379 (1996).10.1007/BF01152950Google Scholar
16. Ritter, J. E., Jakus, K., and Widjaja, S., to be published 1998.Google Scholar
17. Zhu, G. Q., Ritter, J. E., Jakus, K., and Bhattacharya, S., J. Am. Ceram. Soc., 80, 2445 (1997).10.1111/j.1151-2916.1997.tb03142.xGoogle Scholar