Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T01:58:41.721Z Has data issue: false hasContentIssue false

Identification of Interstitial Carbon Related Defects in Silicon

Published online by Cambridge University Press:  26 February 2011

J. L. Benton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. T. Asom
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. Sauer
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
L. C. Kimerling
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

DLTS measurements are used to detect and identify the interstitial related defects in n-type silicon. The materials dependences of the reactions of the [E(0.12), H(O.27)], [ME(0.30), ME(0.29), ME(0.23), ME(0.21)], ]ME(0.10), ME(0.17)] and [H(0.36)] spectral features lead to their identification as representing the two charge states of Ci, the multistable configurations of Ps-Ci, the bistable Cs-Sii-Cs, and the Ci-Oi defects, respectively. The branching ratios for the reactions of interstitial carbon with the impurities are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address, Physikalishes Institut, Universitat Stuttgart, D-7000 Stuttgart 80, Pfaffenwaldring 57, Fed. Rep. Germany

References

Refrences

1.Benton, J. L. and Levinson, M., in Defects in Semiconductors II, edited by Mahajan, S. and Corbett, J. (North-Holland, New York, 1983) p. 95.Google Scholar
2.Chantre, A and Kimerling, L. C., Appl. Phys. Lett., 48, 1000, (1986).Google Scholar
3.Asom, M. T., Benton, J. L., Sauer, R. and Kimerling, L. C., Appl. Phys. Lett., 51, 256 (1987).Google Scholar
4.Bean, A. R. and Newman, R. C., Sol. St. Commun., 8,175 (1970).Google Scholar
5.Watkins, G. D. and Brower, K. L., Phys. Rev. Lett., 36, 1329 (1976).Google Scholar
6.Kimerling, L. C., Blood, P. and Gibson, W. M. in Defects and Radiation Effects in Semiconductors, edited by Albany, J. H. (Inst. Phys. Conf. Ser. 46, 1978) p. 273.Google Scholar
7.Kimerling, L. C. in Radiation Effects in Semiconductors 1976 (Inst. Phys. Conf. Ser. 31) p. 221.Google Scholar
8.Chantre, A., Benton, J. L., Asom, M. T. and Kimerling, L. C., in Defects in Semiconductors, edited by von Bardeleben, H. J. (Trans. Tech., Switzerland, 1986), Vol.10–12, p. 1111.Google Scholar
9.Jellison, G. E., J. Appl. Phys., 53, 5715 (1982).Google Scholar
10.Brotherton, S. D. and Bradley, P., J. Appl. Phys. 53, (8) 5720 (1982).Google Scholar
11.Newman, R. C., Infrared Studies of Crystal Defects, edited by Taylor, and Francis, (London, 1973) p. 128.Google Scholar
12.Thonke, K., Watkins, G. D. and Sauer, R., Sol. St. Commun. 51, 127 (1984).Google Scholar
13.Davis, G., Lightowlers, E. C., Woolley, R., Newman, R. C. and Oates, A., J. Phys. C. 17, L499 (1984).Google Scholar
14.Mooney, P. M., Cheng, L. J., Suli, M., Gerson, J. D. and Corbett, J. W., Phys. Rev. B, 15, 3836 (1977).Google Scholar
15.Trombetta, J. M. and Watkins, G. D., Appl. Phys. Lett. 51, 1103 (1987).Google Scholar
16.O'Donnell, K. D., Lee, K. M., and Watkins, G. D., Physica (Ultrecht) B, 116, 258 (1983).Google Scholar
17.Brower, K. L., Phys. Rev. B 9, 2607 (1974).Google Scholar
18.Murin, L. I., Phys. Stat. Sol. (a), 93, K147 (1986).Google Scholar
19.Watkins, G. D., in Radiation Effects on Semiconductor Components, edited by Cambon, F. (Journeées d'Electronique, Toulouse, 1967) Vol.1, Al.Google Scholar
20.Tipping, A. K. and Newman, R. C., Semicond. Sci. and Technol., 2, 315 (1987).Google Scholar
21.Akhmetov, V. D. and Bolotov, V. V., Phys. Stat. Sol. (a), 72, 61 (1982).Google Scholar
22.Davies, G., Lightowlers, E. C., Newman, R. C., and Oates, A. S., Semicond. Sci. and Technol., 2, 524 (1987).Google Scholar