Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:31:33.402Z Has data issue: false hasContentIssue false

Identification of Diffusion Associated Defects at III-V Semiconductor Heterostructures

Published online by Cambridge University Press:  22 February 2011

R. Enrique Viturro
Affiliation:
Xerox Webster Research Center, 114–41D, 800 Phillips Rd., Webster, NY 14580
Gary W. Wicks
Affiliation:
Institute of Optics, University of Rochester, Rochester, NY 14620
Get access

Abstract

Cathodoluminescence spectroscopy is used to identify diffusion-associated III-V semiconductor defects and establish their role in AlGaAs/GaAs intrinsic and n-type impurity induced interdiffusion (Si, Ge, S, and Se) for various ambient conditions, As- and Ga-rich. These identifications involves the study of the temperature and composition dependence of these deep levels and their correlation with theoretical calculations. Our results reveal Column III vacancies and their complexes as the sole mediators of diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Deppe, G. and Holonyak, N. Jr., J.Appl.Phys. 64, R93 (1988) and references therein.CrossRefGoogle Scholar
[2] , Tan, Gosele, U., and Yu, S., Crit. Rev. Solid State Mater. Sci. 17, 47 (1991).CrossRefGoogle Scholar
[3] Viturro, R. E., Olmsted, B. L., Houde-Walter, S. N., and Wicks, G. W., J. Vac. Sci. Technol. B9, 2244 (1991) and references therein.CrossRefGoogle Scholar
[4] Rouviere, J-L et al. , Phys. Rev. Lett. 68, 2798 (1992).CrossRefGoogle Scholar
[5] Mei, P. et al. , J. Appl. Phys. 65, 2165 (1989).CrossRefGoogle Scholar
[6] Northrup, J. E. and Zhang, S. B., Phys. Rev B 47, 6791 (1993).Google Scholar
[7] , Olmsted, Houde-Walter, S. N., and Viturro, R. E., Mat. Res. Soc. Symp. Proc. Vol. 240, 721 (1991), and Vol. 262, 867 (1992).CrossRefGoogle Scholar
[8] Viturro, R. E., to be published.Google Scholar
[9] , Chiang and Pearson, G. L., J. Appl. Phys. 46, 2986 (1975).CrossRefGoogle Scholar
[10] , Battacharya, Pronko, P. P., ans Ling, S. C., Appl. Phys. Lett. 42, 880 (1983).Google Scholar
[11] Walle, C. G. Van de, Phys. Rev. B 39, 1871 (1989).CrossRefGoogle Scholar
[12] , Hjalmarson, Vogl, P., Wolford, D. J., and Dow, J. D., Phys. Rev. Lett. 44, 810 (1980).Google Scholar
[13] Dow, John. D. et al. J. Electronic Materials 19, 829 (1990) and references thereinGoogle Scholar
[14] Pankove, J. I., Optical Processes in Semiconductors (Dover, New York, 1975) pp.141.Google Scholar
[15] Mooney, P. M., J. Appl. Phys. 67, R1 (1990), D. J. Chadi and S. B. Zhang, J. Electronic Materials 20, 55 (1991).CrossRefGoogle Scholar
[16] We also observe the cubic dependence of the interdiffusion coefficient on free carrier concentration [1,2,4] for Si dopant levels up to roughly 1018 cm−3, as shown by data extracted from Si and n diffusion front, Figure 4(b). The issue in question involves the whole range of impurity concentrations.Google Scholar
[17] Guido, L.J. et al. , J. Appl. Phys. 67, 2179 (1990).Google Scholar