Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T10:18:04.338Z Has data issue: false hasContentIssue false

Identification of Arsenic Surface Species on the Si (100) Surface

Published online by Cambridge University Press:  15 February 2011

S. C. Perino
Affiliation:
Stanford Electronics Laboratories, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
C. R. Helms
Affiliation:
Stanford Electronics Laboratories, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
Get access

Abstract

The molecular character of arsenic adsorbed on the Si (100) surface has been investigated using thermal desorption spectroscopy (TDS) and Auger electron spectroscopy (AES). A variety of arsenic surface species were deposited on the silicon surface by employing different evaporation sources, including metallic arsenic, arsine gas, and chips of GaAs crystals. We present coverage dependent spectra showing the desorption of As4 tetramers at 350°C and As2 dimers at 900°C. The loosely bound arsenic is adsorbed from the solid evaporation sources only and resides on the surface as tetramers. The tightly bound arsenic does not form multiple layers and the high desorption temperatures suggests the adsorbed arsenic exists as monomers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandurah, M. M., Saraswat, K. C. and Helms, C. R., J. Appl. Phys. 51, 5755 (1980).CrossRefGoogle Scholar
2. Schwarz, S. A., Barton, R. W., Ho, C. P. and Helms, C. R., J. Electrochem. Soc. 128, 1101 (1981).Google Scholar
3. Bean, J. C., J. Vac. Sci. Technol. 18, 769 (1981).Google Scholar
4. Bloem, J., J. Crys. Growth 50, 581 (1980).Google Scholar
5. Nesneyanov, A. N. in: Vapor Pressure of the Elements (Academic Press, New York 1963).Google Scholar
6. Schmidt, L. D., Catal. Rev. 9, 115 (1971).Google Scholar
7. Klement, W. Jr. Jayaraman, A. and Kennedy, G. C., Phys. Rev. 131, 632 (1963).Google Scholar
8. Lemons, R. S. and Rosenblatt, G. M., Surf. Sci. 59, 293 (1976).Google Scholar
9. Rosenblatt, G. M. and Lee, P. K., J. Chem. Phys. 49, 2995 (1968).Google Scholar
10. Arthur, J. R., J. Phys. Chem. Solids 28, 2257 (1967).Google Scholar
11. Lou, C. Y. and Somorjai, G. A., J. Chem. Phys. 55, 4554 (1971).Google Scholar
12. DeMaria, G., Malaspina, L. and Peacente, V:, J. Chem. Phys. 52, 1019 (1970).Google Scholar
13. Czanderna, A. W. and Honig, J. M., And. Chem. 29, 1206 (1957).Google Scholar
14. Perino, S. C. and Helms, C. R., J. Vac. Sci. Technol., Mar/Apr (1982).Google Scholar
15. Davis, L. E., Levenson, L. L. and Melles, J. J., J. Crys. Growth 17, 354 (1972).Google Scholar
16. Foxon, C. T. and Joyce, B. A., Surf. Sci. 64, 293 (1977).Google Scholar
17. Arthur, J. R. and Brown, T. R., J. Vac. Sci. Technol. 12, 200 (1975).Google Scholar
18. Arthur, J. R., Surf. Sci. 43, 449 (1974).Google Scholar
19. Arthur, J. R., J. Appl. Phys. 39, 4032 (1968).Google Scholar