Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T07:20:47.308Z Has data issue: false hasContentIssue false

The Hydrothermal Synthesis and Characterization of New Organically Templated Layered Vanadium Oxides by Methylamine

Published online by Cambridge University Press:  10 February 2011

Rongji Chen
Affiliation:
Chemistry Department and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13902–6016
Peter Y. Zavalij
Affiliation:
Chemistry Department and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13902–6016
M. Stanley Whittingham
Affiliation:
Chemistry Department and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13902–6016
Get access

Abstract

The hydrothermal reaction of vanadium pentoxide with methylamine leads to a series of new layered vanadium oxides by using different acids to adjust the initial pH. The structure of these layered vanadium oxides was established by X-ray single crystal and powder diffraction. The new phases were also characterized by TGA and FTIR. The oxidation state of vanadium was determined. These materials are expected to exhibit catalytic activity and may be of interest as cathode materials for secondary lithium batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., Li, J., Guo, J., and Zavalij, P., Materials Science Forum, 152–153, 99 (1994).Google Scholar
2. Whittingham, M. S., Guo, J., Chen, R., Chirayil, T., Janauer, G., and Zavalij, P., Solid State Ionics, 75, 257 (1995).Google Scholar
3. Chirayil, T. A., Zavalij, P. Y., and Whittingham, M. S., Chem. Commun., 33 (1997).10.1039/a606772gGoogle Scholar
4. Zavalij, P., Whittingham, M. S., Boylan, E. A., Pecharsky, V. K., and Jacobson, R. A., Z. Kryst., 211, 464 (1996).Google Scholar
5. Chirayil, T., Zavalij, P. Y., and Whittingham, M. S., J. Mater. Chem., 7, 2193 (1997).Google Scholar
6. Zhang, F., Zavalij, P. Y., and Whittingham, M. S., Mater. Res. Bull., 32, 701 (1997).Google Scholar
7. Haushalter, R. C. and Mundi, L. A., Chem. Mater., 4, 31 (1992).Google Scholar
8. Janauer, G. G., Zavalij, P. Y., and Whittingham, M. S., Chem. Mater., 9, 647 (1997).Google Scholar
9. Reis, K. P., Ramanan, A., and Whittingham, M. S., Chem. Mater., 2, 219 (1990).Google Scholar
10. Akselrud, L. G., Zavalii, P. Y., Grin, Y. N., Pecharsky, V. ?., Baumgartner, B., and Wolfel, E., Materials Science Forum, 133–136, 335 (1993).Google Scholar
11. Andersson, U.S., Acta Chem. Scand., 1371 (1965).Google Scholar
12. Oka, Y., Yao, T., and Yamamoto, N., J. Mater. Chem., 5, 1423 (1995).Google Scholar
13. Savariault, J.-M. and Galy, J., J. Solid State Chem., 101, 119 (1992).Google Scholar
14. Kanke, Y., Kato, K., Takayama-Muromachi, E., and Isobe, M., Acta Cryst., C46, 536 (1990).Google Scholar
15. Yao, T., Oka, Y., and Yamamoto, N., Mater. Res. Bull., 27, 669 (1992).Google Scholar
16. Nazar, L. F., Koene, B. E., and Britten, J. F., Chem. Mater., 8, 327 (1996).Google Scholar
17. Zhang, Y., Haushalter, R. C., and Clearfield, A., J. Chem. Soc, Chem. Commun., 1055 (1996).Google Scholar
18. Zhang, Y., DeBord, R. D., O'Connor, C. J., Haushalter, R. C., Clearfield, A., and Zubieta, J., Angew. Chem. Int. Ed. Engl., 35, 989 (1996).Google Scholar
19. Chen, R., Zavalij, P. Y., and Whittingham, M. S., J. Mater. Chem., 8, in press (1998).Google Scholar
20. Zavalij, P. Y., Chirayil, T., and Whittingham, M. S., Acta Cryst, C53, 879 (1997).Google Scholar