Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-01T01:14:19.919Z Has data issue: false hasContentIssue false

Hydrostatic and uniaxial stress dependence and photo induced effects on the channel conductance of n-A1GaN/GaN heterostructures grown on sapphire substrates

Published online by Cambridge University Press:  10 February 2011

A. K. Fung
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, [email protected], [email protected]
C. Cai
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, [email protected], [email protected]
P. P. Ruden
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, [email protected], [email protected]
M. I. Nathan
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, [email protected], [email protected]
M. Y. Chen
Affiliation:
Rockwell International Science Center, Thousand Oaks, CA 91358
B. T. McDermott
Affiliation:
Rockwell International Science Center, Thousand Oaks, CA 91358
G. J. Sullivan
Affiliation:
Rockwell International Science Center, Thousand Oaks, CA 91358
J. M. Van Hove
Affiliation:
SVT Associates, Eden Prairie, MN 55344
K. Boutros
Affiliation:
Epitronics/ATMI, Phoenix, Arizona 85027
J. Redwing
Affiliation:
Epitronics/ATMI, Phoenix, Arizona 85027
J. W. Yange
Affiliation:
APA Optics, Blaine, Minnesota 55449
Q. Chene
Affiliation:
APA Optics, Blaine, Minnesota 55449
M. A. Khane
Affiliation:
APA Optics, Blaine, Minnesota 55449
W. Schaff
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, NY 14853
M. Murphy
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

We measure the hydrostatic stress, uniaxial stress, and photo induced dependence of the channel conductance of two-dimensional electron gas AlGaN/GaN heterostructures grown on c-axis sapphire. The structures examined are grown by nitrogen-plasma molecular beam epitaxy and metal organic chemical vapor deposition. Electrical conductance measurements are made with four point probes on Hall bar samples. Both, hydrostatic stress and uniaxial stress result in changes in the conductance. Moreover, these changes in conductance have long settling times after the stress is applied and may be due to deep level defects, the energy levels of which change with stress. Stress coefficients extracted from the samples are partially attributed to deep level defects and to the piezoelectric effect resulting from different piezoelectric coefficients of GaN and AlN. Photo induced changes of the two-dimensional electron gas are also observed. We find that pulsed illumination produces long transient times in the conductance. These transients are reduced by thermal heating in some samples. However, they can still be present at 153°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arlt, G. and Quadflieg, P., Phys. Status Solidi 25, 323(1968)10.1002/pssb.19680250131Google Scholar
2. Mercy, J., Bousquet, C., Robert, J., Raymond, A., Gregoris, G., Beerens, J., Portal, J., and Frijlink, P., Surf. Sci. 142, 298(1984)10.1016/0039-6028(84)90326-1Google Scholar
3. Fung, A., Albrecht, J., Nathan, M., and Ruden, P., J. Appl. Phys. 84, 3741(1998)10.1063/1.368552Google Scholar
4. Gaska, R., Yang, J., Bykhovski, A., Shur, M., Kaminski, V., and Soloviov, S., Appl. Phys. Lett. 72, 64(1998)10.1063/1.120645Google Scholar
5. Kim, S., Herman, I., Tuchman, J., Doverspike, K., Rowland, L., and Gaskill, D., Appl. Phys. Lett. 67, 380(1995)10.1063/1.114635Google Scholar
6. Ambacher, O., Smart, J., Shealy, J., Weimann, N., Chu, K., Murphy, M., Schaff, W., Eastman, L., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222(1999)10.1063/1.369664Google Scholar
7. Yang, W., Nohava, T., Krishnankutty, S., Torreano, R., McPherson, S., and Marsh, H., Appl. Phys. Lett. 73, 978(1998)10.1063/1.122058Google Scholar
8. Lu, S., Meng, C., Wiiliamson, F., and Nathan, M., J. Appl. Phys. 69, 8241(1991)10.1063/1.347430Google Scholar
9. Romano, L., Northrup, J., O'Keefe, M., Appl. Phys. Lett. 69, 2394(1996)10.1063/1.117648Google Scholar
10. Munoz, E., Monroy, E., Garrido, J., Izpura, I., Sanchez, F., Sanchez-Garcia, M., Beaumount, B., and Gibart, P., Appl. Phys. Lett. 71, 870(1997)10.1063/1.119673Google Scholar
11. Qiu, C., Melton, W., Leksono, M., Pankove, J., Keller, B., and DenBaars, S., Appl. Phys. Lett. 69, 1282(1996)10.1063/1.117392Google Scholar
12. Li, J., Lin, J., Jiang, H., Khan, M., and Chen, Q., J. Vac. Sci. Tech. B 15, 1117(1997)10.1116/1.589424Google Scholar
13. Dang, X., Wang, C., Yu, E., Boutros, K., and Redwing, J., Appl. Phys. Lett. 72, 2745(1998)10.1063/1.121077Google Scholar
14. Huang, Z., Mott, D., Shu, P., Zhang, R., Chen, J., and Wickenden, D., J. Appl. Phys. 82, 2707(1997)10.1063/1.366090Google Scholar
15. Hirsch, M., Seifert, O., Kirfel, O., Parisi, J., Wolk, J., Walukiewicz, W., Haller, E., Ambacher, O., Stutzmann, M., Mat. Res. Soc. Symp. Pro. 482, 531(1998)10.1557/PROC-482-531Google Scholar