Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T07:19:10.030Z Has data issue: false hasContentIssue false

Hydrogen Passivation Of Er-Doped AIN

Published online by Cambridge University Press:  10 February 2011

S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
J. D. MacKenzie
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
U. Hömmerich
Affiliation:
Department of Physics, Research Center for Optical Physics, Hampton University, Hampton, VA 23668
J. M. Zavada
Affiliation:
US Army Research Office, Research Triangle Park, NC 27709
F. Rent
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
R. N. Schwartz
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
Get access

Abstract

AIN(Er) doped with Er during Metal Organic Molecular Beam Epitaxy has been plasma hydrogenated in-situ at 200–250°C using an Electron Cyclotron Resonance source. By isotopic substitution of 2H for 1H, we have found from Secondary Ion Mass Spectrometry profiling that a 30 min hydrogenation treatment can incorporate ˜2×1019cm−3 deuterium atoms to depths ≥1μm. The intensity of the 1.54μm Er3+ luminescence is increased by a factor of ˜5 by the 200°C hydrogenation, and this effect is thermally stable to 300°C, indicating a binding energy of >1.5eV for hydrogen at defects in the AIN. These defects would normally either be recombination centers or provide an alternative de-excitation path for the Er. We have previously found that AIN provides the best resistance to thermal quenching of Er luminescence of any semiconductor due to its wide bandgap. Together, these results suggest that AIN(Er) may be a promising material for optical control of devices such as light-triggered SiC or GaN thyristors for power switching applications, where a fiber-transmitted signal from temperaturetolerant material is necessary in controlling power distribution grids. Hydrogen does not leave the AIN until ˜800°C and presumably forms an intermediate state such as H2 or larger clusters prior to evolution from the surface, and again this stability is among the best for any semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smart, R.G., Zyskind, J.L., Sulhoff, J.W. and Giovanni, D.J. Di, IEEE Photon. Technol. Lett. 5, 523 (1993).Google Scholar
2. Michael, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.H., Poate, J.M. and Kimerling, L.C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
3. Polman, A., Hoven, G.N. van der, Custer, J.S., Shin, J.H., Serna, R. and Alkemande, P.F.A., J. Appl. Phys. 77, 1256 (1995).Google Scholar
4. Coffa, S., Franzo, G., Priolo, F., Polman, A. and Serna, R., Phys. Rev. B49 16313 (1994).Google Scholar
5. Polman, A., Custer, J.S., Smoeks, E. and Hoven, G.N. van der, Nucl. Instr. Meth. B 80/81, 653 (1993).Google Scholar
6. Eaglesham, D.J., Michel, J., Fitzgerald, E.A., Jacobson, D.C., Poate, J.M., Benton, J.L., Polman, A., Xie, Y.H. and Kimerling, L.C., Appl. Phys. Lett. 48, 2797 (1991).Google Scholar
7. Favennec, P.N., Haridan, H.L., Sulvi, M., Moutonnet, D. and Cuillou, Y.L., Electron. Lett. 25, 718 (1989).Google Scholar
8. Franzo, G., Priolo, F., Coffa, S., Polman, A. and Casnera, A., Appl. Phys. Lett. 64, 2235 (1994).Google Scholar
9. Ren, F.Y.G., Michel, J., Paduano, Z.S., Zhang, B., Kitagawa, H., Jacobson, D.C., Poate, J.M. and Kimerling, L.C., Mat. Res. Soc. Symp. 301, 87 (1993).Google Scholar
10. Kik, P.G., Dood, M.J.A. de, Kikoin, K. and Polman, A., Appl. Phys. Lett. 70, 1721 (1997).Google Scholar
11. see for example the volume Rare Earth Doped Semiconductors II, ed. Coffa, S., Polman, A. and Schwartz, R.N., Mat. Res. Soc. Symp. Proc. 422 (1996) and references therein.Google Scholar
12. Neuhalfen, A.J. and Wessels, B.W., Appl. Phys. Lett. 60, 2657 (1992).Google Scholar
13. Wang, X.Z. and Wessels, B.W., Appl. Phys. Lett. 64, 1537 (1994).Google Scholar
14. Wang, X.Z. and Wessels, B.W., Appl. Phys. Lett. 67, 519 (1995).Google Scholar
15. Zavada, J.M. and Zhang, D., Solid State Electron 38, 1285 (1995).Google Scholar
16. MacKenzie, J.D., Abernathy, C.R., Pearton, S.J., Hömmerich, U., Wu, X., Schwartz, R.N., Wilson, R.G. and Zavada, J.M., Appl. Phys. Lett. 69, 2083 (1996).Google Scholar
17. Zavada, J.M., Wilson, R.G., Schwartz, R.N., MacKenzie, J.D., Abernathy, C.R., Pearton, S.J., Wu, X. and Hömmerich, U., Mat. Res. Soc. Symp. 422, 193 (1996).Google Scholar
18. MacKenzie, J.D., Abernathy, C.R., Pearton, S.J., Hömmerich, U., Wu, X., Schwartz, R.N., Wilson, R.G. and Zavada, J.M., J. Cryst. Growth 175/176, 84 (1997).Google Scholar
19. Wu, X., Hömmerich, U., MacKenzie, J.D., Abernathy, C.R., Pearton, S.J., Schwartz, R.N., Wilson, R.G. and Zavada, J.M., Appl. Phys. Lett. 70, 2126 (1997).Google Scholar
20. Abernathy, C.R., Mat. Sci. Eng. Rep. R14, 203 (1995).Google Scholar
21. Wilson, R.G., Stevie, F.A. and Magee, C.W., Secondary Ion Mass Spectrometry (Wiley, New York, 1989).Google Scholar
22. McCall, S.L., Levi, A.F.J., Slusher, R.E., Pearton, S.J. and Logan, R.A., Appl. Phys. Lett. 60, 289 (1992).Google Scholar
23. Polyakov, A.Y., Shin, M., Pearton, S.J., Skowronski, M., Greve, D.W. and Freitas, J.A., Mat. Res. Soc. Symp. Proc. 423, 607 (1996).Google Scholar
24. Pearton, S.J., Corbett, J.W. and Stavola, M., Hydrogen in Crystalline Semiconductors, (Springer-Verlag, Heidelber, 1992).Google Scholar
25. Zavada, J.M., Wilson, R.G., Abernathy, C.R. and Pearton, S.J., Appl. Phys. Lett. 64, 2724 (1994).Google Scholar
26. Wilson, R.G., Pearton, S.J., Abernathy, C.R. and Zavada, J.M., J. Vac. Sci. Technol. A13, 719 (1995).Google Scholar