Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T19:05:24.386Z Has data issue: false hasContentIssue false

Hydrogen Incorporation into CU-III-VI2 Chalcopyrite Semiconductors

Published online by Cambridge University Press:  10 February 2011

K. Otte
Affiliation:
Istitute for Surface Moification, Permoserstr. 15, 04318 Leipzig, Germany, [email protected] de
G. Lippold
Affiliation:
University of Leipzig, Faculty of Physics and Geosciences, Linnéstr. 5, 04103 Leipzig, Germany
D. Grambole
Affiliation:
Research Center Rossendorf, PF 510119, 01314 Dresden, Germany
F. Herrmann
Affiliation:
Research Center Rossendorf, PF 510119, 01314 Dresden, Germany
H. Schlemm
Affiliation:
Istitute for Surface Moification, Permoserstr. 15, 04318 Leipzig, Germany, [email protected] de
A. Schindler
Affiliation:
Istitute for Surface Moification, Permoserstr. 15, 04318 Leipzig, Germany, [email protected] de
F. Bigl
Affiliation:
Istitute for Surface Moification, Permoserstr. 15, 04318 Leipzig, Germany, [email protected] de
Get access

Abstract

We implanted at 300 eV into Cu-chalcopyrite semiconductors at temperatures between 50°C and 300°C. The surface chemistry is similar to the previously reported behavior of CuInS2 implanted with a H2+, H+ low energy ion beam [1] with respect to secondary phase etching. We also found an increase of radiative recombination (photoluminescence), which had been attributed to defect passivation and, hence, as an indicator of hydrogen incorporation [2]. Under the 300 eV implantation conditions, however, we observed neither a hydrogen concentration in a few hundred nm surface range exceeding the NRA detection limit of about 1×1019 cm-3 nor a pronounced stoichiometry variation in the ternary material, as proved by Raman measurements.

We conclude, therefore, that a 300 eV implantation introduces significantly less atomic hydrogen into the volume of the sample than previously reported for other beam compositions under similar temperature and current density conditions. This could be a result of the very low energy of less than 100 eV which can be expected for atomic H produced by dissociation of 300 eV at the surface, making the instant out-diffusion into the high vacuum of the implantation chamber a favored process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lippold, G., Otte, K., Schindler, A., Klenk, R., Krauser, J., and Schlemm, H., Proc. ICTMC 11th, Salford, UK, 1997.Google Scholar
2. Martin, R. W., Urquhart, F. A., Yakushev, M. V., Faunce, C. A., Hill, A. E., Pilkington, R. D., Van den Berg, J. A., Armour, D. G., and Tomlinson, R. D., Proc. ICTMC 11th, Salford, UK, 1997.Google Scholar
3. Ballutaud, D., Debiemme-Chouvy, C., Etcheberry, A., de Mierry, P., and Svob, L., Appl. Surf. Sc. 84, 187 (1995).Google Scholar
4. Bocchi, C., Franzosi, P., Lazzarini, L., Salviati, G., Gastaldi, L., and Palumbo, R., J. Electrochem. Soc. 140, 2034 (1993).Google Scholar
5. de Mierry, P., Etchegoin, P, and Stutzmann, M., Phys. Rev. 49, 5283 (1994).Google Scholar
6. Yakushev, M. V., Tomlinson, R. D., and Neumann, H., Cryst. Res. Technol. 29, 125 (1994).Google Scholar
7. Yakushev, M. V., Zegadi, A., Neumann, H., Jones, P. A., Hill, A. E., Pilkington, R. D., Slifkin, M. A., and Tomlinson, R. D., Cryst. Res. Technol. 29, 427 (1994).Google Scholar
8. Nelson, A. J., Frigo, S. P., and Rosenberg, R., J. Appl. Phys. 73, 8561 (1993).Google Scholar
9. Lippold, G., Otte, K., Schindler, A., and Bigl, F., DE Patent No. 19652471.7 (17.12.1996).Google Scholar
10. Otte, K., Schindler, A., Bigl, F., Lippold, G., Schlemm, H., Yakushev, M. V., and Tomlinson, R. D., Proc. ICTMC 11 th, Salford, UK, 1997.Google Scholar
11. Krauser, J., Weidinger, A., Lippold, G., Otte, K., Bruns, J., Trpper, K., Scheer, R., Klenk, R., Weber, M., Lux-Steiner, M. Ch., Proc. 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997.Google Scholar
12. Otte, K., Schindler, A., Bigl, F., and Schlemm, H., Rev. Sci. Instr., accepted (1998).Google Scholar
13. Schlemm, H., J. Vac. Sci. Technol. A 14, 223 (1996).Google Scholar
14. Rudolph, W., Grambole, D., Grötzschel, R., Heiser, C., Herrmann, F., Knothe, P., Neelmeijer, C., Nucl. Instr. Meth. B 33, 803 (1988).Google Scholar
15. Groß, B., Marion, S., Hempelmann, R., Grambole, D., Herrmann, F., Solid State Ionics, in press (1998).Google Scholar
16. Lippold, G., Yakushev, M. V., Tomlinson, R. D., Hill, A. E., and Grill, W., Cryst. Res. Technol. 31, 381 (1996).Google Scholar