Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T05:42:02.111Z Has data issue: false hasContentIssue false

Hydrogen Atom Adsorption on Aluminum Clusters: An Electronic Structures Density Functional Study

Published online by Cambridge University Press:  03 February 2011

Phung Thi Viet Bac
Affiliation:
Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, JAPAN
Hiroshi Ogawa
Affiliation:
Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, JAPAN
Get access

Abstract

Properties of hydrogenated icosahedral aluminum clusters were investigated using density functional theory in comparison with those of aluminum bulk systems. Two surface models simulating f.c.c. and icosahedral (111) surfaces were introduced. Results show that the H atom interacts weakly with surface of clusters when the cluster size is increased. The migration energy of H atom between neighboring T and O sites becomes smaller for icosahedral subsurface than for either bulk material or the f.c.c. subsurface. The results indicate that the icosahedral surface is more favored for H atom to adsorp than f.c.c. surface, the icosahedral surface increases the migration barriers of H atom from the surface to the subsurface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schulz, R., Boily, S., Zaluski, L., Zaluka, A., Tessier, P., and Strom-Olsen, J.O., Innovation in Metallic Materials (1995) 529535.Google Scholar
2. Ahlrichs, R., Elliott, S.D., Phys. Chem. Chem. Phys. 1 (1999) 13.Google Scholar
3. Alonso, J.A., Chem. Rev. 100 (2000) 637.Google Scholar
4. Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Chem. Lett. 16 (1987) 405408; C.T. Campbell, Science 306(2004) 234–235; M. Haruta, Chem. Rec. 3 (2003) 75–87; M. Valden, X. Lai, D.W. Goodman, Science 281 (1998) 1647–1650.Google Scholar
5. Crane, E.L., Nuzzo, R.G., Phys, J.. Chem. B, 105 (2001) 30523061.Google Scholar
6. Bastasz, R., Whaley, J.A., Proc. International Conference on Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions (2003) 919926.Google Scholar
7. Burkart, S., , Blessing, N., Klipp, B., Muller, J., Gantefor, G., Seifert, G., Chem. Phys. Lett. 301 (1999) 546550.Google Scholar
8. Kawamura, H., Kumar, V., Sun, Q., Kawazoe, Y., Phys. Rev. B 65 (2001) 045406.Google Scholar
9. Mananes, A., Duque, F., Mendez, F., Lopez, M.J., Alonso, J.A., J. Chem. Phys. 119 (2003) 51285141.Google Scholar
10. Schlapbach, L., Züttel, A., Nature 414 (2001) 353358.Google Scholar
11. Yarovskya, A. Goldberg, Molecular Simulation 31 (2005), 475481.Google Scholar
12. Phung, T.V.B., Nishikawa, K., Nagao, H., AIP Proc. Int. Conf. on Computational Methods in Science and Engineering 1046 (2008) 6467. T.V.B. Phung, T.Hashimoto, K. Nishikawa, H. Nagao, Int. J. Quantum Chemistry 109 (2009) 3602–3612.Google Scholar
13. Viet Bac, Phung Thi, Ogawa, Hiroshi, J. Alloys and Compounds 2010 (in press).Google Scholar
14. MacKay, A.L., Acta Cryst. 15 (1962) 916.Google Scholar
15. Farges, J., de Feruady, M.F., Raoult, B., Torchet, G., Acta Cryst. (1982) A38, 656.Google Scholar
16. Hohenberg, P., Kohn, W., Phys. Rev. 136 (1964) B864.Google Scholar
17. Kohn, W., Sham, L.J., Phys. Rev. 140 (1965) A1133.Google Scholar
18. Kresse, G., Hafner, J., Phys. Rev. B 47 (1993) 558.Google Scholar
20. Kresse, G., Hafner, J., Phys. Rev. B 49 (1994) 14251.Google Scholar
21. Kresse, G., Furthmüller, J., Comput. Mater. Sci. 6 (1996) 15.Google Scholar
22. Vanderbilt, D., Phys. Rev. B 41 (1990) 7892.Google Scholar
23. Lu, G., Orlikowski, D., Park, I., Politano, O., Kaxiras, E., Phys. Rev. B 65 (2002) 064102.Google Scholar
24. Wolverton, C., Ozolins, V., Asta, M., Phys. Rev. B 69 (2004) 144109.Google Scholar
25. Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13 (1976) 5188.Google Scholar
26. Henkelman, G., Uberuaga, B.P., Jonsson, H., J. Chem. Phys. 113 (2000) 9901.Google Scholar
27. Young, G.A., Scully, J.R., Acta Mater. 46 (1998) 6337.Google Scholar