Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T11:47:37.070Z Has data issue: false hasContentIssue false

Hrteminvestigation of 90° Domain Configureuration and P-E Hysteresis Loop of Epitaxial PZT Multilayered Thin Films

Published online by Cambridge University Press:  11 February 2011

Takanori Kiguchi
Affiliation:
Center for Advanced Materials Analysis, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan
Naoki Wakiya
Affiliation:
Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan
Kazuo Shinozaki
Affiliation:
Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan
Nobuyasu Mizutani
Affiliation:
Center for Advanced Materials Analysis, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan
Get access

Abstract

Multi-layered epitaxial Pb(Zrx,Ti1-x)O3 (PZT) films of x=0.2–0.5 were deposited on La0.5Sr0.5CoO3-x (LSCO)/ (001)STO and LSCO/CeO2/YSZ/(001)Si substrates with buffer layers. It was investigated how the 90° domain structure and the P-E hysteresis character depend on the difference of the thermal expansion coefficient by changing the Zr/Ti composition and the substrates, using HRTEM and XRD methods. XTEM analysis showed that usual lamella configuration of 90° domains of 8–30nm in width penetrated the columnar grain and the PZT layer in the PZT stacked film of Zr/Ti=20/80, 30/70, 40/60. On the other hand, the close-packed 90° domains of 4–5nm in width existed in a epitaxial columnar grain in the PZT50/50 stacked film. The P-E hysteresis loops of PZT20/80 stacked films deposited on STO and Si substrates show the remanent polarization of 2Pr=136μC/cm2, 2Pr=80μC/cm2, respectively. On the other hands, those of PZT50/50 stacked films deposited on STO and Si substrates show the polarization of 2Pr=125μC/cm2, 2Pr=36μC/cm2, respectively. Thus, the P-E hysteresis loop of PZT50/50 has remarkable difference of 2Pr between the substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Araujo, C.A., MacmMillan, L.D., Melnick, B.M., Cuchiaro, J.D., and Scott, J.F., Ferroelectrics, 104. 241 (1990)Google Scholar
[2] Johnes, R.E., Zu'rcher, P., Chou, P., Taylor, D.J., Lii, Y.T., Jiang, B., Maniar, P.D., and Gillespie, S.J., Microelectron. Eng., 29, 3 (1995)Google Scholar
[3] Suzuki, M., J. Ceram. Soc. Japan, 103, 1099 (1995)Google Scholar
[4] Ganpule, C.S., Nagarajan, V., Li, H., Ogale, A.S., Martinez, A.D., Ogale, S.B., Aggarwal, S.A., Williams, E., Wolf, P.De., and Ramesh, R., Integrated Ferroelectrics, 32, 199 (2001)Google Scholar
[5] Emelyanov, A.Yu. and Pertsev, N.A., Iintegrated Ferroelectrics, 32, 343 (2001)Google Scholar
[6] Speck, J.S., Seifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys, 76, 477 (1994)Google Scholar
[7] Alpay, S.P., Nagarajan, V., Vendersky, L.A., Vaudin, M.D., Aggarwal, S., Ramesh, R., and Roytburd, A.L., Appl. Phys., 85, 3271 (1999)Google Scholar
[8] Foster, C.M., Li, Z., Buckett, M., Miller, D., Baldo, P.M., Rehn, L.E., Bai, G.R., Guo, D., You, H., and Merkel, K.L., J. Appl. Phys., 78, 2607 (1995)Google Scholar
[9] Theis, C.D. and Schlom, D.G., J. Mater. Sci, 12, 1297 (1997)Google Scholar
[10] Novojilov, M.A., Kaul, A.R., Gorbrnoko, O.Y., Wahl, G., and Krause, U., Integrated Ferroelectrics, 33, 79 (2001)Google Scholar
[11] Tuttle, B.A., Voigt, J.A., Goodnow., D.C., Lamppa, D.L., Headley, T.J., Eatough, M.O., Zenner, G., Nasby, R.D., and Rodgers, S.M., J. Am. Ceram. Soc., 76, 1537–44 (1993)Google Scholar
[12] Sagalowicz, L., Pmuralt, , Hiboux, S., Maeder, T., Brooks, K., Kighelman, Z. and Setter, N., Mat. Res. Soc. Symp. Proc 596, Pittsburgh, PA, 265 (2000)Google Scholar
[13] Kim, J.H., Kim, Y., Chen, A.T‥, and Lange, F.F., J. Mater. Res‥, 16, 1739 (2001)Google Scholar
[14] Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Glichrist, H., and Keramidas, V.G., Appl. Phys. Lett., 63, 27 (1993)Google Scholar
[15] Kim, K.Y., Hwang, H.I., Lee, J.Y., and Choo, W.K., Mat. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 197 (1992)Google Scholar
[16] Ghonge, S.G., Goo, E., Ramesh, R., Sands, T. and Keramidas, V.G., Appl. Phys. Lett., 63, 1628 (1993)Google Scholar
[17] Twai, P., Zheleva, T., and Narajayan, J., Appl. Phys. Lett., 63, 30 (1993)Google Scholar
[18] Lin, C.H., Yen, B.M., Kuo, H.C., Chen, H., Wu, T.B., and Stillman, G.E., J. Mater. Res., 15, 115 (2000)Google Scholar
[19] Lee, K.S., Kang, Y.M., and Baik, S., J. Mater Res, 14, 132 (1999)Google Scholar
[20] Roytburd, A.L. and Yu, Y., Ferroelectrics, 144, 137 (1993)Google Scholar
[21] Alpay, S.P. and Roytburd, A.L., Mat. Res. Soc. Symp. Proc. 474 Pittsburgh, PA, 407 (1997)Google Scholar
[22] Romanov, A.E., Pompe, W., and Speck, J.S., J. Appl. Phys., 79, 4037 (1996)Google Scholar
[23] Speck, J.S., Seifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys, 76, 466 (1994)Google Scholar
[24] Pertsev, N.A. and Zembilgotov, A.G., J. Appl. Phys., 80, 6401 (1996)Google Scholar
[25] Pellet, C., Thin Solid Films, 175, 23 (1989)Google Scholar
[26] Bardal, A., Matthee, Th., Wecker, J., and Samwer, K., J. Appl. Phys. 75, 2902 (1994)Google Scholar
[27] Hirai, T., Teramoto, K., Koike, H., Nagashima, K., and Tarui, Y., Jpn. J. Appl. Phys. 36, 5253 (1997)Google Scholar
[28] Horita, S., Watanabe, M., and Masuda, A., Mater. Sci. Eng‥ B54, 79 (1998)Google Scholar
[29] Matthee, T., Wecker, J., Behner, H., Friedl, g., Eibl, O., and Samwer, K., Appl. Phys. Lett., 61, 1240 (1992)Google Scholar
[30] Baadal, A., Mzwerger, , Eibl, O., Wecker, J., and Metthee, T., Appl. Phys. Lett., 61, 1243 (1992)Google Scholar
[31] Bardal, A., Eibl, O., Matthee, T., Friedl, G., and Wecker, J., J. Mater. Res., 8, 2112 (1993)Google Scholar
[32] Kang, Y.M. and Baik, S., J. Appl. Phys., 82, 2532 (1997)Google Scholar
[33] Kwak, B.S., Eibl, A., Budai, J.D., Chrisholm, M.F., Boatner, L.A., and Wilkens, B.J., Phys. Rev., B49, 14865 (1994)Google Scholar
[34] Elemkin, V.V., Smotrakov, V. G., and Fesenko, E.G., Ferroelectrics, 110 137, (1990)Google Scholar
[35] Keijeser, M., Leeuw, D.M., Veldhoven, P.J., De Veirmean, A.E.M., Neerinck, D.G., and Dormans, G.J.M., Thin Solid Films, 266, 157 (1995)Google Scholar
[36] Stemer, S., Streiffer, S.K., Hsu, W-Y., Ernst, F., Raj, R., and Ruhle, M., J. Mater. Res, 10, 791 (1995)Google Scholar
[37] Foeth, M., Sfera, A., Stadelmann, P. and Buffat, P.-A., Journal of Electron Microscope, 48, 717 (1999)Google Scholar
[38] Huan, M.J., Furman, E., Jang, S.J. and Cross, L.E., Ferroelectrics, 99, 63 (1989)Google Scholar
[39] Ramesh, R., Extended abstract of IUMRS-ICEM2002, 636 (2002)Google Scholar