Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:34:03.723Z Has data issue: false hasContentIssue false

Hrem Visualization of Light Atoms: An Application to the Study of Carbon Defects in Ordered Transition Metal Carbides

Published online by Cambridge University Press:  21 February 2011

T. Epicier*
Affiliation:
Institut National des Sciences Appliqudées de Lyon, GEMPPM-502, u.r.a. 341 CNRS, 69621 Villeurbanne Cedex, FRANCE
Get access

Abstract

This paper gives an overview of recent High Resolution Electron Microscopy (HREM) observations of transition metal carbides. The main point is to show how HREM can be used to study a sublattice of light atoms within a complex crystal. General tendencies of this approach will be outlined, which appear, to a large extent, to be common to similar possible studies of other compounds such as nitrides, borides or oxides. Specifically, attention is focused on studies of long-range ordered structures in carbides, due to non-stoichiometry accommodated by metalloid vacancies. Various examples are given for representative compounds, including V8C7, V6C, 5, Nb6C5 and W2C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] De Novion, C. H. and Landesman, J. P., Pure & Appl. Chem., 57, 10, 1391, (1985).Google Scholar
[2] Epicier, T., to be published in Proceed. NATO ARW The Physics and Chemistry of Carbides. Nitrides and Borides(held at Manchester, U.K., 1989).Google Scholar
[3] Epicier, T., Blanchin, M. G., Ferret, P., Fuchs, G., Phil. Mag. A, 59, 4, 885, (1989).Google Scholar
[4] Epicier, T., Thesis (Thése d'Etat), Lyon - F.-, n° 88/SAL/0038, 228 p., (1988); to be published in Proceed. NATO ARW The Physics and Chemistry of Carbides. Nitrides and Borides held at Manchester, U.K., (1989).Google Scholar
[5] lijima, S., Acta Cryst., A 31, 784, (1975).Google Scholar
[6] Watanabe, D. and Terasaki, O., Mat. Res. Soc. Proc. 21, New York, NY, (1984), pp. 231239.Google Scholar
[7] Amelinckx, S., Van Tendeloo, G. and Van Landuyt, J., Ultramicrosc., 18, 395, (1985).Google Scholar
[8] Shindo, D., Acta Cryst., A 38, 310, (1982).Google Scholar
[9] Billingham, J., Bell, P. S. and Lewis, M. H., Phil. Mag., 25, 3, 661, (1972).Google Scholar
[10] Horiuchi, S., Ultramicrosc., B, 8 27, (1982).Google Scholar
[11] Ourmazd, A. and Spence, J. C. H., Nature, 329, 1, 425, (1987).Google Scholar
[12] Endoh, H., Hashimoto, H., Kubawara, M., Tomita, M. and Yokota, Y., in Proc. Eigth Eur. Cong. Electron Microsc., 1, Budapest (1984), pp. 473474.Google Scholar
[13] Hiraga, K., Tsuno, K., Shindo, D., Hirabayashi, M., Hayashi, S. and Hirai, T., Phil. Mag. A, 47, 4, 483, (1983).Google Scholar
[14] Smith, D. J. and O'Keefe, M. A., Acta Cryst., A 39, 139, (1983).Google Scholar
[15] Tang, D., Teng, C. M., Zou, J. and Li, F. H., Acta Cryst., B 42, 340, (1986).Google Scholar
[16] Smith, D. J., Camps, R. A., Freeman, L. A., O'Keefe, M. A., Saxton, W. O. and Wood, G. J., Ultramicrosc., la, 18, 63(1985).10.1016/0304-3991(85)90122-6Google Scholar
[17] Epicier, T., O'Keefe, M. A. and Thomas, G., to appear in Acta Cryst.Google Scholar
[18] Bursill, L. A. and Jun, Shen Guang, Optik, 66, 3, 251, (1984).Google Scholar
[19] Bursill, L. A., Smith, D. J. and Evans, R. G., Proc. Roy. Soc. Lond., A 415, 227, (1988).10.1098/rspa.1988.0011Google Scholar
[20] Guan, R., Hashimoto, H. and Kuo, K. H., Ultramicrosc., 20, 195, (1986).10.1016/0304-3991(86)90186-5Google Scholar
[21] Nakajima, Y., Morimoto, N. and Watanabe, E., Proc. Japan. Acad., 60, 359, (1975).Google Scholar
[22] Yla-Jaaski, J. and Nissen, H. U., Phys. Chem. Minerals, 10, 47, (1983).Google Scholar
[23] Nakayama, N., Takano, M., Inamura, S., Nakanishi, N. and Kosuge, K., J. Solid State Chem., 71, 403, (1987).Google Scholar
[24] Hiraga, K., Shindo, D., Hirabayashi, M., Kikuchi, M., Oh-ishi, K. and Syono, Y., Jap. J. Appl. Phys., 26, 7, L1071, (1987).Google Scholar
[25] Guérin, Y. and De Novion, C. H., Rev. Int. Hautes Tempér. et Réfract., t 8, 311, (1971).Google Scholar
[26] Van Tendeloo, G., Van Dyck, D. and Amelinckx, S., Ultramicrosc., 19, 235, (1986).Google Scholar
[27] Ourmazd, A., Renschler, J. R. and Taylor, D. W., Phys. Rev. Letters, 57, 24, 3073, (1986).Google Scholar
[28] Epicier, T., Esnouf, C., to appear in Phil. Mag. Letters, 61, (1990).Google Scholar
[29] Landesman, J. P., Christensen, A. N., De Novion, C. H., Lorenzelli, N. and Convert, P., J. Phys. C,, 18 809, (1985).Google Scholar
[30] Venables, J. D., Kahn, D. and Lye, R. G., Phil. Mag., 18, 177, (1968).10.1080/14786436808227320Google Scholar
[31] Epicier, T. and Kumashiro, Y. in Non-Stoichiometric Compounds (Adv. in Ceram. 23, Westerville: Am. Cer. Soc. 1987), pp. 677690.Google Scholar
[32] Hiraga, K., Phil. Mag., 27, 6, 1301, (1973).Google Scholar
[33] Hannink, R. H. J., Murray, M. J. and Packer, M. E., Phil. Mag., 191, 1179, (1971).Google Scholar
[34] Lewis, M. H. and Billingham, J., Phil. Mag., 29, 241, (1974).Google Scholar
[35] Epicier, T., Esnouf, C. and Kilaas, R., in preparation.Google Scholar
[36] Venables, J. D. and Lye, R. G., Phil. Mag., 19, 565, (1969).Google Scholar
[37] Julin, Peng, Bursill, L. A., Optik, 81, 4, 167, (1989).Google Scholar