Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T04:08:24.672Z Has data issue: false hasContentIssue false

High-Temperature W Diode Lasers Emitting at 3.3µm

Published online by Cambridge University Press:  10 February 2011

L. J. Olafsen
Affiliation:
Naval Research Laboratory, Code 5613, Washington, DC 20375
W. W. Bewley
Affiliation:
Naval Research Laboratory, Code 5613, Washington, DC 20375
I. Vurgaftman
Affiliation:
Naval Research Laboratory, Code 5613, Washington, DC 20375
C. L. Felix
Affiliation:
Naval Research Laboratory, Code 5613, Washington, DC 20375
E. H. Aifer
Affiliation:
Naval Research Laboratory, Code 5613, Washington, DC 20375
D. W. Stokes
Affiliation:
Naval Research Laboratory, Code 5613, Washington, DC 20375
J. R. Meyer
Affiliation:
Naval Research Laboratory, Code 5613, Washington, DC 20375
H. Lee
Affiliation:
Saoff Corporation, CN 5300, Princeton, NJ 08543-5300
R. J. Menna
Affiliation:
Saoff Corporation, CN 5300, Princeton, NJ 08543-5300
R. U. Martinelli
Affiliation:
Saoff Corporation, CN 5300, Princeton, NJ 08543-5300
D. Z. Garbuzov
Affiliation:
Saoff Corporation, CN 5300, Princeton, NJ 08543-5300
M. Maiorov
Affiliation:
Saoff Corporation, CN 5300, Princeton, NJ 08543-5300
J. C. Connolly
Affiliation:
Saoff Corporation, CN 5300, Princeton, NJ 08543-5300
A. R. Sugg
Affiliation:
Sensors Unlimited, Princeton, NJ 08540-5914
G. H. Olsen
Affiliation:
Sensors Unlimited, Princeton, NJ 08540-5914
Get access

Abstract

W lasers based on type-II antimonides were recently operated nearly to room temperature under the conditions of cw optical pumping. However, the development of electrically pumped mid-infrared lasers has not yet reached the same level of performance. This is largely related to the more challenging task of simultaneously optimizing the doping/transport and gain/optical properties of the devices. Here we report a demonstration of type-II mid-IR diode lasers employing W active quantum wells. Laser structures with 5 or 10 active periods sandwiched between broadened-waveguide separate confinement regions and quaternary optical cladding layers were processed into 100-µm-wide stripes, cleaved into 1-mm-long cavities, and mounted junction side down. For 0.5-1 µs pulses at a repetition rate of 200 Hz, lasing was obtained up to a maximum operating temperature of 310 K, where the emission wavelength was 3.27 µm. The threshold current densities were 110 A/cm2and 25 kA/cm2 at 78 and 310 K, respectively. The characteristic temperature, To, was 48 K for temperatures between 100 and 280 K. Operation in cw mode was obtained to 195 K, with threshold current densities of 63 A/cm2and 1.4 kA/cm2at 78 and 195 K, respectively, with To = 38 K between 78 and 195 K. Significant further improvements in the operating characteristics are expected once the optimization of the designs and fabrication procedures is complete.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hasenberg, T. C., Miles, R. H., Kost, A. R., and West, L., IEEE J. Quantum Electron. 33, p. 1403 (1997).Google Scholar
2. Choi, H. K., Turner, G. W., Manfra, M. J., and Connors, M. K., Appl. Phys. Lett. 68, p. 2936 (1996).Google Scholar
3. Choi, H. K., Eglash, S. J., and Turner, G. W., Appl. Phys. Lett. 64, p. 2474 (1994).Google Scholar
4. Gmachl, C., Sergent, A. M., Tredicucci, A., Capasso, F., Hutchinson, A. L., Sivco, D. L., Baillargeon, J. N., Chu, S. N. G., and Cho, A. Y., IEEE Phot. Tech. Lett. 11, p. 1369 (1999).Google Scholar
5. Schiessl, U. P. and Rohr, J., Infr. Phys. Technol. 40, p. 325 (1999).Google Scholar
6. Feit, Z., McDonald, M., Woods, R. J., Archambault, V., and Mak, P., Appl. Phys. Lett. 68, p. 738 (1996).Google Scholar
7. Capasso, F., Faist, J., Sirtori, C., and Cho, A. Y., Solid State Commun. 102, p. 231 (1997).Google Scholar
8. Olafsen, L. J., Aifer, E. H., Vurgaftman, I., Bewley, W. W., Felix, C. L., Meyer, J. R., Zhang, D., Lin, C.-H., and Pei, S. S., Appl. Phys. Lett. 72, p. 2370 (1998).Google Scholar
9. Felix, C. L., Bewley, W. W., Vurgaftman, I., Meyer, J. R., Goldberg, L., Chow, D. H., and Selvig, E., Appl. Phys. Lett. 71, p. 3483 (1997).Google Scholar
10. Bewley, W. W., Felix, C. L., Vurgaftman, I., Stokes, D. W., Aifer, E. H., Olafsen, L. J., Meyer, J. R., Yang, M. J., Shanabrook, B. V., Lee, H., Martinelli, R. U., and Sugg, A. R., Appl. Phys. Lett. 74, p. 1075 (1999).Google Scholar
11. Bewley, W. W., Aifer, E. H., Felix, C. L., Vurgaftman, I., Meyer, J. R., Lin, C.-H., Murry, S. J., Zhang, D., and Pei, S. S., Appl. Phys. Lett 71, p. 3607 (1997).Google Scholar
12. Meyer, J. R., Hoffman, C. A., Bartoli, F. J., and Ram-Mohan, L. R., Appl. Phys. Lett. 67, p. 757 (1995).Google Scholar
13. Garbuzov, D., Maiorov, M., Lee, H., Khalfin, V., Martinelli, R., and Connolly, J., Appl. Phys. Lett. 74, p. 2990 (1999).Google Scholar