Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T23:35:56.527Z Has data issue: false hasContentIssue false

High-Resolution Photochemical Reaction Using Triplet-Sensitizer Probes

Published online by Cambridge University Press:  01 February 2011

Hideki Miki
Affiliation:
Kansai Advanced Research Center, National Institute of Information & Communications Technology, 588–2 Iwaoka, Nishi-ku, Kobe 651–2492, Japan
Akira Otomo*
Affiliation:
Kansai Advanced Research Center, National Institute of Information & Communications Technology, 588–2 Iwaoka, Nishi-ku, Kobe 651–2492, Japan
Shinro Mashiko
Affiliation:
Kansai Advanced Research Center, National Institute of Information & Communications Technology, 588–2 Iwaoka, Nishi-ku, Kobe 651–2492, Japan
*
Corresponding author.
Get access

Abstract

We propose molecular-scale photochemical-reaction control using triplet-triplet (T-T) energy transfer from a donor molecule attached on a probe to an acceptor on an insulator surface. In this work, we studied the feasibility of photochemical reactions on a substrate surface using a triplet sensitizer probe. We observed an efficient T-T energy transfer from Michler's ketone on the substrate to an acceptor molecule, cinnamoyl group, on the other substrate facing it. Approximately a quarter of the cinnamoyl groups were dimerized by triplet sensitization. We used a cone-shaped dendron molecule to avoid sensitizer self-quenching caused by the triplet energy migration within the probe surface. We then confirmed efficient site separation of the cone's focal point by measuring the absorption and fluorescent properties of the rhodamine B attached to the focal point. The generation-three dendrons provide enough distance between the functional sites on the probe to reduce singlet energy transfer and it should control triplet energy migration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whitesides, G. M., Mathias, J. P., Seto, C. T., Science 254, 1312 (1991).Google Scholar
2. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y., Mashiko, S., Nature 413, 619 (2001).Google Scholar
3. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R., Beton, P. H., Nature 424, 1029 (2003).Google Scholar
4. Okawa, Y. and Aono, M., Nature 409, 683 (2001); J. Chem. Phys. 115, 2317 (2001).Google Scholar
5. Betzig, E. and Trautman, J.K., Science 257, 189 (1992).Google Scholar
6. Müller, W. T., Klein, D. L., Lee, T., Clarke, J., McEuen, P. L., Schultz, P. G., Science 268, 272 (1995).Google Scholar
7. Hyun, J., Kim, J., Craig, S. L., Chilkoti, A., J. Am. Chem. Soc. 126, 4770 (2004).Google Scholar
8. Dexter, D. L., J. Chem. Phys. 21, 836 (1953).Google Scholar
9. Hecht, S. and Fréchet, J. M. J., Angew. Chem. Int. Ed. 40, 74 (2001) and references therein.Google Scholar
10. Otomo, A., Yokoyama, S., Nakahama, T., Mashiko, S., Appl. Phys. Lett. 77, 3881 (2000).Google Scholar
11. Otomo, A., Otomo, S., Yokoyama, S., Mashiko, S., Thin Solid Films 393, 278 (2001).Google Scholar
12. Yokoyama, S., Otomo, A., Mashiko, S., Appl. Phys. Lett. 80, 7 (2002).Google Scholar
13. Otomo, A., Otomo, S., Yokoyama, S., Mashiko, S., Opt. Lett. 27, 891 (2002).Google Scholar
14. Suppan, P., Ber. Bunsenges. Phys. Chem. 72, 321 (1968).Google Scholar
15. Tsuda, M., Bull. Chem. Soc. Jpn. 42, 905 (1969).Google Scholar
16. Schuster, D. I., Goldstein, M. D., Bane, P., J. Am. Chem. Soc. 99, 187 (1977).Google Scholar
17. Förster, T., Disc. Faraday Soc. 27, 7 (1959).Google Scholar
18. MacDonald, R. I., J. Biol. Chem. 265, 13533 (1990).Google Scholar