Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T04:47:33.343Z Has data issue: false hasContentIssue false

Highly efficient blue organic light-emitting diodes using DPASN quantum well structure

Published online by Cambridge University Press:  11 June 2013

Ju-An Yoon
Affiliation:
Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan, Korea
You-Hyun Kim
Affiliation:
Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan, Korea
Nam Ho Kim
Affiliation:
Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan, Korea
Seung Il Yoo
Affiliation:
Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan, Korea
Sang Youn Lee
Affiliation:
Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan, Korea
Woo Young Kim*
Affiliation:
Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan, Korea Department of Engineering Physics, McMaster University, Hamilton, Canada
Get access

Abstract

In this study, we fabricated blue OLEDs with quantum well structure (QWS) using four different blue emissive materials such as DPVBi, ADN and DPASN, and BAlq as QWS material. Conventional QWS blue OLEDs used to be composed of emissive layer and charge blocking layer with lower HOMO-LUMO energy level, but we designed triple emitting layer for more significant hole-electron recombination in EML and a wider region of exciton generation as forming QWS spontaneously. The structure of triple emitting layered blue OLED is ITO / NPB(700 Å) / X(100 Å) / BAlq(100 Å) /X (100 Å) / Bphen(300 Å) / Liq(20 Å) / Al(1200 Å) (X= DPVBi, ADN, DPASN). HOMO-LUMO energy levels of DPVBi, ADN, DPASN and BAlq were 2.8-5.9, 2.6-5.6, 2.3-5.2 and 2.9-5.9 eV, respectively. The maximum luminous efficiency was 5.32 cd/A at 3.5 V in a blue OLED with DPASN / BAlq / DPASN QWS.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tang, C.W., VanSlyke, S.A., Appl. Phys. Lett. 51, 913, (1987).CrossRefGoogle Scholar
Mori, Tatsuo, Itoh, Takaaki, Mizutani, Teruyoshi J.Photopolym.Sci.Technol. 17, 2, (2004).CrossRefGoogle Scholar
Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lüssem, B., Leo, K., Nature. 59, 234, (2009).CrossRefGoogle Scholar
Gu, G., Burrows, P. E., Venkatesh, S., Forrest, S. R., Thompson, M. E., Opt. Lett. 22, 172, (1997).CrossRefGoogle Scholar
song, Dandan, Zhao, Suling, Aziz, Hany, Adv. Funct. Mater. 21, 2311, (2011).CrossRefGoogle Scholar
D’Andrade, B. W. and Forrest, S. R., Adv. Mater. (Weinheim, Ger.) 16, 1585, (2004).CrossRefGoogle Scholar
Krummacher, B. C., Choong, V. E., Mathai, M. K., Choulis, S. A., So, F., Jermann, F., Fiedler, T., and Zachau, M., Appl. Phys. Lett. 88, 113506, (2006).CrossRefGoogle Scholar
D’Andrade, B. W., Holmes, R. J., and Forrest, S. R., Adv. Mater. (Weinheim, Ger.) 16, 624, (2004).CrossRefGoogle Scholar
Shinar, J., Organic Light-Emitting Devices, Springer Press, New York (2004).CrossRefGoogle Scholar
Gautier-Thianche, E., Sentein, C., Lorin, A., Denis, C., Raimond, P., .Nunzi, J.M, J. Appl. Phys. 83 4236, (1998).CrossRefGoogle Scholar
Hubert, C., Fiorini-Debuisschert, C., Hassiaoui, I., Rocha, L., Raimond, P., Nunzi, J.M., Appl. Phys. Lett. 87 191105, (2005).CrossRefGoogle Scholar
Kim, S.H., Jang, J., Hong, J.M., Lee, J.Y., Appl. Phys. Lett. 90, 173501, (2007).CrossRefGoogle Scholar
Liu, S.M., Li, B., Zhang, L.M., Song, H., Jiang, H., Appl. Phys. Lett. 97, 083304, (2010).CrossRefGoogle ScholarPubMed
Zhao, Juan, Yu, Junsheng, Zhang, Lei, Wang, Jun, Physica B. 407, 2753, (2012).CrossRefGoogle Scholar
Ohmori, Y., Fujii, A., Uchida, M., Morishima, C., and Yoshino, K., Appl. Phys. Lett. 62, 3250, (1993).CrossRefGoogle Scholar
Qiu, Y., Gao, Y., Wang, L., Wei, P., Duan, L., Zhang, D., and Dong, G., Appl. Phys. Lett. 81, 3540, (2002).CrossRefGoogle Scholar
Qiu, Y., Gao, Y., Wei, P., and Wang, L., Appl. Phys. Lett. 80, 2628, (2002).CrossRefGoogle Scholar
Song, S. F., Zhao, D. W., Xu, Z., and Xu, X. R., Acta Phys. Sin. 56, 3499, (2007).Google Scholar
Kim, S. H., Jang, J., Hong, J. M., and Lee, J. Y., Appl. Phys. Lett. 90, 173501, (2007).CrossRefGoogle Scholar
Zhu, H. N., Xu, Z., Zhao, S. L., Zhang, F. J., Kong, C., Yan, G., and Gong, W., Acta Phys. Sin. 59, 8093, (2010).Google Scholar
Jian, Zhong, Juan, Gao, Zhuo, Gao, Ke, Dai, and Jiule, Chen, Optical Review, 18, 394, (2011).CrossRefGoogle Scholar
Culligan, W., Chen, Andrew C.-A., Wallace, Jason U., Klubek, Kevin P., Tang, Ching W., and Chen, Shaw H., Adv. Funct. Mater. 16, 1481, (2006).CrossRefGoogle Scholar