Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T08:44:32.211Z Has data issue: false hasContentIssue false

High Speed Strength Testing of Optical Fiber

Published online by Cambridge University Press:  10 February 2011

G. S. Glaesemann
Affiliation:
Corning Incorporated, Corning, NY 14831
D. A. Clark
Affiliation:
Corning Incorporated, Corning, NY 14831
T. A. Hanson
Affiliation:
Corning Incorporated, Corning, NY 14831
D. J. Wissuchek
Affiliation:
Corning Incorporated, Corning, NY 14831
Get access

Abstract

Optical fiber models for mechanical reliability require that the initial strength and crack growth parameters be measured. High speed testing allows one to investigate and model common high-speed processing events during fiber processing such as proof testing, coloring and cabling. In this study stressing rates ranging from 7×10−6 GPa/s to 1.5 TPa/s were accomplished using a universal testing machine, belt slide and pneumatic piston. When plotted in typical dynamic fatigue fashion the data shows curvature at the faster stressing rates. The presence of region II type crack growth is suggested as a possible explanation for this curvature. A multi-region crack growth model is used to extract crack growth parameters that are used to make comparisons with crack velocity results on bulk glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hanson, T.A. and Glaesemann, G.S., J. Mater. Sci. 32 53055311 (1997).10.1023/A:1018662727060Google Scholar
2. Glaesemann, G.S., Proc. SPIE, 2611, 3844 (1995).10.1117/12.230121Google Scholar
3. Chandan, H.C., Bradt, R.C. and Rindone, G.E., J. Am. Ceram. Soc., 61 [5–6] 207–210 (1978).10.1111/j.1151-2916.1978.tb09280.xGoogle Scholar
4. Roach, D.H., J. Am. Ceram. Soc., 69 [8] C168 (1986).Google Scholar
5. Glaesemann, G.S., pp. 689704 in proceedings of the 41st International Wire and Cable Symposium, Reno, Nevada, November, 1992.Google Scholar
6. Garvey, P.T., Hanson, T.A., Estep, M.G., Glaesemann, G.S., pp. 883887 in proceedings of the 46th International Wire and Cable Symposium, Philadelphia, Pennsylvania, November 1997.Google Scholar
7. Fuller, E.R. Jr, Wiederhorn, S.M., Ritter, J.E. Jr, and Oats, P.B., J. Mater. Sci., 15 22822295 (1980).10.1007/BF00552318Google Scholar
8. Wiederhorn, S.M., J. Am. Ceram. Soc., 52 [27] 99105 (1969).10.1111/j.1151-2916.1969.tb13350.xGoogle Scholar
9. Glaesemann, G.S., Jakus, K. and Ritter, J.E. Jr, J. Am. Ceram. Soc., 70 [6] 441444 (1987).10.1111/j.1151-2916.1987.tb05665.xGoogle Scholar
10. Glaesemann, G.S., pp. 297307 in Proc. 10th NFOEC, Volume 4, San Diego, CA, June 1994.Google Scholar
11. Hibino, Y., Sakaguchi, S. and Tajima, Y, J. Am. Ceram. Soc., 67 [1] 6468 (1984).10.1111/j.1151-2916.1984.tb19150.xGoogle Scholar
12. Semjonov, S.L. and Bubnov, M.M., Proc. of 1998 MRS Spring Meeting, San Francisco, CA, 1998.Google Scholar
13. Matthewson, M.J., Kurkjian, C.R. and Hamblin, J.R., J. Light. Tech., 15 [3] 490497 (1997).10.1109/50.557565Google Scholar