Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T13:27:53.022Z Has data issue: false hasContentIssue false

High Resolution Thermal Imaging of Integrated Circuits

Published online by Cambridge University Press:  01 February 2011

Gilles Tessier
Affiliation:
[email protected], ESPCI, Laboratoire d'optique, 10 Rue Vauquelin, Paris, 75005, France, 33 1 40 79 45 39, 33 1 43 36 23 95
Mathieu Bardoux
Affiliation:
[email protected], ESPCI / UPRA005 CNRS, Laboratoire d'optique, 10 Rue Vauquelin, Paris, 75005, France
Céline Filloy
Affiliation:
[email protected], ESPCI / UPRA005 CNRS, Laboratoire d'optique, 10 Rue Vauquelin, Paris, 75005, France
Danièle Fournier
Affiliation:
[email protected], ESPCI / UPRA005 CNRS, Laboratoire d'optique, 10 Rue Vauquelin, Paris, 75005, France
Get access

Abstract

Thermoreflectance is an non contact optical method using the local reflectivity variations induced by heating to infer temperature mappings, and can be conducted at virtually any wavelength. In the visible, the technique is now well established. It can probe temperatures through several micrometers of transparent encapsulation layers, with sub-micron spatial resolution and 100 mK thermal resolution. In the ultraviolet range, dielectric encapsulation layers are opaque and thermoreflectance gives access to the surface temperature. In the near infrared, thermoreflectance is an interesting solution to examine chips turned upside down, since these wavelengths can penetrate through silicon substrates and give access to the temperature of the active layers themselves. Here, we explore the possibilities of each wavelength range and detail the CCD-based thermal imaging tools dedicated to the high resolution inspection of integrated circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sheard, S. J., Appel, R. K., and Somekh, M. G., Electronics Letters 23 (5), 227 (1987).Google Scholar
2 Serio, B. and Cretin, B., in Proceedings Congrés SFT (Elsevier, Grenoble, 2003), pp. 711.Google Scholar
3 Shi, L., Li, D. Y., Yu, C. H., Jang, W. Y., Kim, D., Yao, Z., Kim, P., and Majumdar, A., Journal of Heat Transfer-Transactions of the Asme 125 (5), 881 (2003); P. S. Dobson, G. Mills, and J. M. R.Weaver, Review of Scientific Instruments 76 (5), 54901 (2005); L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, Applied Physics Letters 87 (18) (2005).Google Scholar
4 Abstreiter, G., Applied Surface Science 50 (1-4), 73 (1991).Google Scholar
5 Dilhaire, S., Fournier, D., and Tessier, G., Microscale and Nanoscale Heat Transfer 107, 239 (2007).Google Scholar
6 Dilhaire, S., Grauby, S., and Claeys, W., Applied Physics Letters 84 (5), 822 (2004).Google Scholar
7 Tessier, G., Hole, S., and Fournier, D., Applied Physics Letters 78 (16), 2267 (2001).Google Scholar
8 Christofferson, J. and Shakouri, A., Review of Scientific Instruments 76 (2) (2005).Google Scholar
9 Tessier, G., Jerosolimski, G., Hole, S., Fournier, D., and Filloy, C., Review of Scientific Instruments 74 (1), 495 (2003).Google Scholar
10 Tessier, G., Hole, S., and Fournier, D., Optics Letters 28 (11), 875 (2003).Google Scholar
11 Christofferson, J. and Shakouri, A., Microelectronics Journal 35 (10), 791 (2004).Google Scholar
12 Ghosh, G., (1998).Google Scholar
13 Forget, B. C., Grauby, S., Fournier, D., Gleyzes, P., and Boccara, A. C., Electronics Letters 33 (20), 1688 (1997).Google Scholar
14 Gleyzes, P., Guernet, F., and Boccara, A. C., Journal of Optics-Nouvelle Revue D Optique 26 (6), 251 (1995).Google Scholar
15 Grauby, S., Forget, B. C., Hole, S., and Fournier, D., Review of Scientific Instruments 70 (9), 3603 (1999).Google Scholar
16 Abid, R., Miserey, F., and Mezroua, F. Z., Journal De Physique Iii 6 (2), 279 (1996); V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectronic Engineering 31 (1-4), 291 (1996).Google Scholar
17 Pauw, L. J. Van Der, Philips Research Report 13, 1 (1958).Google Scholar
18 Wilson, J. S. and Raad, P. E., International Journal of Heat and Mass Transfer 47 (17-18), 3707 (2004); P. E. Raad, J. S. Wilson, and D. C. Price, Ieee Transactions on Components Packaging and Manufacturing Technology Part A 21 (3), 412 (1998); P. E. Raad, J. S. Wilson, and D. C. Price, US Patent No. 6 064 810 (2000).Google Scholar
19 Palik, E. D., Journal of the Optical Society of America a-Optics Image Science and Vision 1 (12), 1297 (1984).Google Scholar
20 Rampnoux, J. M., Michel, H., Salhi, M. A., Grauby, S., Claeys, W., and Dilhaire, S., Microelectronics Reliability 46 (9-11), 1520 (2006).Google Scholar
21 Li, H. H., Journal of Physical and Chemical Reference Data 9 (3), 561 (1980).Google Scholar
22 Mansfield, S. M. and Kino, G. S., Applied Physics Letters 57 (24), 2615 (1990).Google Scholar
23 Ippolito, S. B., Goldberg, B. B., and Unlu, M. S., Applied Physics Letters 78 (26), 4071 (2001).Google Scholar
24 Ippolito, S. B., Goldberg, B. B., and Unlu, M. S., Journal of Applied Physics 97 (5) (2005).Google Scholar
25 Ramsay, E., Pleynet, N., Xiao, D., Warburton, R. J., and Reid, D. T., Optics Letters 30 (1), 26 (2005).Google Scholar
26 Ippolito, S. B., Thorne, S. A., Eraslan, M. G., Goldberg, B. B., Unlu, M. S., and Leblebici, Y., Applied Physics Letters 84 (22), 4529 (2004); O. Breitenstein, F. Altmann, T. Riediger, D. Karg, and V. Gottschalk, Microelectronics Reliability 46 (9-11), 1508 (2006).Google Scholar
27 Tessier, G., Polignano, M. L., Pavageau, S., Filloy, C., Fournier, D., Cerutti, F., and Mica, I., Journal of Physics D-Applied Physics 39 (19), 4159 (2006).Google Scholar