Published online by Cambridge University Press: 25 February 2011
Small precipitates of high lattice mismatch with respect to the matrix may be investigated by high resolution and high contrast moiré fringe images in TEM. One group of such precipitates are the MX-type precipitates with M = Ti, V, Zr, Nb, Hf, Ta, and X = C,N that form in austenitic steels. The usefulness of moiré images for the investigation of these MX-type precipitates is demonstrated and compared to other electron imaging and diffraction methods. The moiré technique has been used to study (a) nucleation and growth of precipitates, (b) the evolution of dual precipitate structures at grain boundaries, (c) morphology and faceting of small precipitates (∼10 nm diameter), (d) lattice parameter differences due to variation in precipitate chemical composition, (e) interaction of precipitates with dislocations, (f) gas atom trapping at precipitates, and (g) irradiation induced precipitate nucleation at point defect clusters.