Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:04:28.655Z Has data issue: false hasContentIssue false

High Barrier Height n-GaN Schottky diodes with a barrier height of 1.3 eV by using sputtered copper metal

Published online by Cambridge University Press:  10 February 2011

W. C. Lai
Affiliation:
National Cheng Kong University, Department of Electrical Engineering, Tainan, Taiwan, R.O.C.
M. Yokoyama
Affiliation:
National Cheng Kong University, Department of Electrical Engineering, Tainan, Taiwan, R.O.C.
C. Y. Chang
Affiliation:
National Chiao Tung University, Institute of Electronic, Hsinchu 30050, Taiwan, R.O.C.
J. D. Guo
Affiliation:
National Nano Device Laboratories, Hsinchu 30050, Taiwan, R. 0. C.
J. S. Tsang
Affiliation:
National Nano Device Laboratories, Hsinchu 30050, Taiwan, R. 0. C.
S. H. Chan
Affiliation:
National Nano Device Laboratories, Hsinchu 30050, Taiwan, R. 0. C.
S. M. Sze
Affiliation:
National Cheng Kong University, Department of Electrical Engineering, Tainan, Taiwan, R.O.C.
Get access

Abstract

Copper Schottky diodes on n-type GaN grown by metal-organic chemical vapor deposition were achieved and investigated. Ti/Al was used as the ohmic contact. The copper metal is deposited by the Sputter system. The barrier height was determined to be as high as (ΦB =1.13eV by current-voltage (I-V) method and corrected to be ΦB =1.35eV as considered the ideality factor, n, with the value of 1.2. By the capacitance-voltage (C-V) method, the barrier height is determined to be ΦB =1.41eV. Both results indicate that the sputtered copper metal is a high barrier height Schottky metal for n-type GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Hacke, P., Detchprohm, T., Hiramatsu, K. and Sawaki, N.: Appl. Phys. Lett. 63 (1993) 2676.10.1063/1.110417Google Scholar
2) Binari, S. C., Dietrich, H. B., Kelner, G., Rowland, L. B., Doverspike, K. and Gaskill, D. K.: Electron. Lett. 30 (1994) 909.10.1049/el:19940565Google Scholar
3) Khan, M. R. H., Detchprohm, T., Hacke, P., Hiramatasu, K. and Sawaki, N.: J. Phys. D28 (1995) 1169.Google Scholar
4) Guo, J. G., Feng, M. S., Guo, R. J., Pan, F. M. and Chang, C. Y.: Appl. Phys. Lett. 67 (1995) 2657.10.1063/1.114327Google Scholar
5) Wang, L., Nathan, M. Y., Lim, T.- H., Khan, M. A. and Chen, Q.: Appl. Phys. Lett. 68 (1996) 1267.10.1063/1.115948Google Scholar
6) Ping, A. T., Scmitz, A. C., Khan, M. A. and Adesida, I.: Electron. Lett. 32 (1996) 68.10.1049/el:19960029Google Scholar
7) Mohammad, S. N., Fan, Z. F., Botchkarev, A. E., Kim, W., Aktas, O., SalVador, A. and Morkoc, H.: Electron. Lett. 32 (1996) 598.10.1049/el:19960354Google Scholar
8) Suzue, K., Mohammad, S. N., Fan, Z. F., Kim, W., Akats, O., Botchkarev, A. E. and Morkoc, H.: J. Appl. Phys. 80 (1996) 4467.10.1063/1.363408Google Scholar
9) Kalinina, E. V., Kuznetsou, N. I., Dmitriev, V. A., Irvine, K. G., and Carter, C. H. Jr: J. Electron. Mater. 25 (1996) 831.10.1007/BF02666644Google Scholar
10) Liu, Q. Z., Yu, L. S., Lau, S. S., Redwing, J. M., Perkins, N. R. and Kuoch, T. F.: Appl. Phys. Lett. 70 (1997) 1275.10.1063/1.118551Google Scholar
11) Sze, S. M.: Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981) 2 nd ed., Chap. 5.Google Scholar
12) Norde, H.: J. Appl. Phys. 50 (1979) 5052.10.1063/1.325607Google Scholar
13) Schroder, D. K.: Semiconductor Material And Device Characterization (John Wiley & Sons, New York, 1990), 153154.Google Scholar
14) Wagner, L. F., Young, R. W., and Sugerman, A.: IEEE Electron. Device Lett. ED–4, (1983) 320.10.1109/EDL.1983.25748Google Scholar