Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T17:50:21.872Z Has data issue: false hasContentIssue false

Hierarchical Macroporous Mesoporous Materials for Biodiesel Synthesis.

Published online by Cambridge University Press:  13 July 2011

Karen Wilson*
Affiliation:
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
Adam F Lee
Affiliation:
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
Jean-Philippe Dacquin
Affiliation:
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
Get access

Abstract

The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of routes to utilize renewable feedstocks as sustainable sources of fuels. Catalysis has a rich history of facilitating energy efficient selective molecular transformations and contributes to 90% of chemical manufacturing processes and to more than 20% of all industrial products. In a post-petroleum era catalysis will be central to overcoming the engineering and scientific barriers to economically feasible routes to bio-fuels. This article will highlight some of the recent developments in the development of solid acid and base catalysts for the transesterification of oils to biodiesel. Particular attention will be paid to the challenges faced when developing new catalysts and importance of considering the design of pore architectures to improve in-pore diffusion of bulky substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

2

Present address: UCCS, University of Lille, Lille, France.

References

REFERENCES

1. Yan, X., Inderwildi, O.R. and King, D.A.,Energy Environ.Sci. 3, 190, (2010).10.1039/B915801DGoogle Scholar
2. Mata, T.M., Martins, A.A., and Caetano, N.S., Renew. and Sust. En. Rev. 14, 217, (2010).10.1016/j.rser.2009.07.020Google Scholar
3. Canakci, M. and Gerpen, J.V., Trans. ASAE 42, 1203, (1999).10.13031/2013.13285Google Scholar
4. Cantrell, D.G, Gillie, L.J., Lee, A.F. and Wilson, K., Appl. Catal. A 287, 183, (2005).10.1016/j.apcata.2005.03.027Google Scholar
5. Montero, J.M., Gai, P.L., Lee, A.F., and Wilson, K., Green Chem. 11, 265, (2009).10.1039/B814357AGoogle Scholar
6. Wilson, K., Tavener, S.J., Lee, A.F., Narasimahrao, K., Brown, D.R., Siril, P. and Newman, A.D., J. Catal. 248, 226, (2007).Google Scholar
7. Pesaresi, L., Brown, D.R., Lee, A.F., Montero, J.M., Williams, H. and Wilson, K., Appl. Catal. A 360, 50, (2009).10.1016/j.apcata.2009.03.003Google Scholar
8. Dhainaut, J., Dacquin, J.P., Lee, A.F. and Wilson, K., Green Chem. 12, 296, (2010).10.1039/B919341CGoogle Scholar
9. Peterson, G.R. and Sacarrah, W.P., J. Am. Oil Chem. Soc. 61, 1593, (1984).10.1007/BF02541639Google Scholar
10. Mizuno, N.,Misono, M., Chem. Rev. 98, 199, (1998).10.1021/cr960401qGoogle Scholar
11. Okuhara, T., Mizuno, N. and Misono, M., Adv. Catal. 41, 113, (1996).Google Scholar
12. Kulkarni, M.G., Gopinath, R., Meher, L.C. and Dalai, A.K., Green Chem. 8, 1056, (2006).10.1039/b605713fGoogle Scholar
13. Okuhara, T., Nishimura, T., Watanabe, H. and Misono, M., J. Mol. Catal. 74, 247, (1992).10.1016/0304-5102(92)80242-9Google Scholar
14. Okuhara, T., Arai, T., Ichiki, T., Lee, K.Y. and Misono, M., J. Mol. Catal. 55, 293, (1989).10.1016/0304-5102(89)80263-9Google Scholar
15. Cavani, F., Trifirò, F. and Vaccari, A., Catal. Today, 11, 173, (1991).10.1016/0920-5861(91)80068-KGoogle Scholar
16. Dacquin, J-P, Cross, H. E., Brown, D. R., Duren, T., Williams, J. J., Lee, A. F. and Wilson, K., Green Chem. 12, 1383, (2010).10.1039/c0gc00045kGoogle Scholar