Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T05:17:13.173Z Has data issue: false hasContentIssue false

Heterojunction, Vacuum-Glass Field Effect Transistors

Published online by Cambridge University Press:  01 February 2011

Michael W. Geis
Affiliation:
[email protected], MIT Lincoln Laboratory, Submicrometer Technology, 244 Wood St., Lexington, MA, 02420, United States, 781-981-4658, 781-981-4983
Sandra Deneault
Affiliation:
[email protected], MIT Lincoln Laboratory, Submicrometer Technology, United States
Keith E. Krohn
Affiliation:
[email protected], MIT Lincoln Laboratory, Submicrometer Technology, United States
Michael Marchant
Affiliation:
[email protected], MIT Lincoln Laboratory, Submicrometer Technology, United States
David L. Cooke
Affiliation:
[email protected], U.S. Air Force Research Laboratory, United States
Theodore M. Lyszczarz
Affiliation:
[email protected], MIT Lincoln Laboratory, Submicrometer Technology, United States
Get access

Abstract

This note reports on a surface field effect transistor, SFET, where the electron channel consists of the interface between vacuum and a Cs-doped glass, and an electrode on the back of the glass substrate is used as the gate. The device has a transconductance of 4×10−10 S cm−1. The transconductance is limited by the glass surface roughness, ∼ 0.4 nm RMS. A reduction of surface roughness to 0.1 nm RMS is expected to increase device transconductance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grimes, C. C., Surf. Sci. 73, 379395 (1978).10.1016/0039-6028(78)90517-4Google Scholar
2. Osgood, R. M., and Wang, X., Solid State Phys. 51, 278 (1998).Google Scholar
3. Steinmann, W., Phys. Status Solidi B 192, 339356 (1995).Google Scholar
4. Mehrotra, R., Guo, C. J., Ruan, Y. Z., Mast, D. B., and Dahn, A. J., Phys. Rev. B 29, 52395242 (1984).10.1103/PhysRevB.29.5239Google Scholar
5. Zav'yalov, V. V., Smol'yaninov, I. I., Zotova, E. A., Borodin, A. S., and Bogomolov, S. G., J. Low Temp. 138, 415420 (2005).Google Scholar
6. Geis, M. W., Deneault, S., Krohn, K. E., Marchant, M., Cooke, D. L., and Lyszczarz, T. M., Appl. Phys. Lett. 87, 192115 (2005).10.1063/1.2130382Google Scholar
7. Okano, K., Koizumi, S., Silva, S. R. P., and Amaratunga, G. A., Nature 381, 140141 (1996).Google Scholar
8. Zhu, W., Bower, C., Zhou, O., Kochanski, G., and Jin, S., Appl. Phys. Lett. 75, 873875 (1999).10.1063/1.124541Google Scholar
9. Platzman, P. M. and Dykman, M. I., Science 284, 19671969 (1999).Google Scholar
10. Zav'yalov, V. V. and Smol'yaninov, I. I., Sov. Phys. JETP 67, 171176 (1988).Google Scholar
11. Levinson, I. B., Sov. Phys. JETP 68, 395401 (1989).Google Scholar
12. Kajita, F. K., Surf. Sci. 142, 8695 (1984).10.1016/0039-6028(84)90290-5Google Scholar
13. Geis, M. W., Gregory, J. A., and Pate, B. B., IEEE Trans. Electron Devices, 38, 619626 (1991).10.1109/16.75174Google Scholar
14. Himpsel, F. J., Knapp, J. A., VanVechten, J.A., and Eastman, D. E., Phys. Rev. B 20, 624627 (1979).10.1103/PhysRevB.20.624Google Scholar
15. Dinh, L. N., McLean, W. II, Schildbach, M. A., and Balooch, M., Phys. Rev. B 59, 1551315522 (1999).10.1103/PhysRevB.59.15513Google Scholar
16. Geis, M.W., Twichell, J.C., Macaulay, J., and Okano, K., Appl. Phys. Lett. 67, 13281330 (1995).Google Scholar
17. Albrecht, U. and Leiderer, P., Surf. Sci. 283, 423426 (1993).Google Scholar
18. Klier, J., Doicescu, I., and Leiderer, P., J. of Low Temp. 121, 603608 (2000).Google Scholar
19. Dittmer, G., Thin Solid Films 9, 317328 (1972).10.1016/0040-6090(72)90122-8Google Scholar