Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:35:42.409Z Has data issue: false hasContentIssue false

Helical, Disordered, and What that Means: Structural Characterization of a New Series of Methyl 1-Thiaoligo(ethylene Oxide) Self-Assembled Monolayers

Published online by Cambridge University Press:  01 February 2011

David J. Vanderah
Affiliation:
Biotechnology Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8313
Jennifer Arsenault
Affiliation:
Biotechnology Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8313
Hongly La
Affiliation:
Biotechnology Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8313
Vitalii Silin
Affiliation:
Biotechnology Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8313
Curtis W. Meuse
Affiliation:
Biotechnology Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8313
Richard S. Gates
Affiliation:
Biotechnology Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8313
Get access

Abstract

Self-assembled monolayers (SAMs) of a series of linear thiols containing a 1-thiaoligo(ethylene oxide) [TOEO] moiety, i.e., HS(CH2CH2O)xCH3, where x = 3 - 6, were prepared on polycrystalline gold (Au) and characterized by reflection absorption infrared spectroscopy (RAIRS) and spectroscopic ellipsometry (SE). For x = 5 and 6, the RAIRS data show that the TOEO segment, oriented normal to the substrate, adopts the highly ordered 7/2 helical structure of the folded-chain crystal polymorph of poly(ethylene oxide). For x = 3 and 4, the RAIRS and SE data indicate disordered, “amorphous” SAMs with essentially no evidence of the helical conformation in the TOEO segment. These data suggest that, for SAMs with TOEO segments, a minimum of five ethylene oxide units is required to adopt a helical conformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ratner, B.D.; Hoffman, F.J.; Schoen, J.E.; Lemons, F. Biomaterials Science. An Introduction to Materials in Medicine, Academic Press: New York, 1996.Google Scholar
2. Hench, L.L. Biomaterials: An Interfacial Approach; Academic Press, New York, 1982.Google Scholar
3. Stelzle, M.; Wagner, R.; Nisch, W.; Jägermann, W.; Fröhlich, R.; Schaldach, M. Biosensors & Bioelectronics 1997, 12, 853.Google Scholar
4. Wedler, F.C.; Riedhammer, T.M., Biocompatability in Clinical Practice 1982, 11, 1.Google Scholar
5. Vadgama, P. Chemistry in Britain 1992, 249.Google Scholar
6. Benesch, J.; Svedhem, S.; Svensson, S.C.T.; Valiokas, R.; Liedberg, B.; Tengvall, P. J. Biomat. Sci. - Polym. E. 2001, 12, 581597.Google Scholar
7. Harder, P.; Grunze, M.; Dahint, R.; Whitesides, G.M.; Laibinis, P.E., J. Phys. Chem. B 1998, 102, 426.Google Scholar
8. Silin, V.; Weetall, H.; Vanderah, D.J., J. of Coll. and Interface Sci. 1997, 185, 94.Google Scholar
9. Prime, K.L.; Whitesides, G.M., J. Am. Chem. Soc. 1993, 115, 10714.Google Scholar
10. Prime, K.L.; Whitesides, G.M., Science 1991, 252, 1164.Google Scholar
11. Pale-Grosdemange, C.; Simon, E.S.; Prime, K.L.; Whitesides, G.M., J. Am. Chem. Soc 1991, 113, 12.Google Scholar
12. Papra, A.; Gadegaard, N.; Larsen, N.B., Langmuir 2001, 17, 1457.Google Scholar
13. Yang, Z.; Galloway, J.A.; Yu, H. Langmuir 1999, 15, 8405.Google Scholar
14. Vanderah, D.J.; Valincius, G.; Meuse, C.W., Langmuir, submitted.Google Scholar
15. Vanderah, D.J.; Meuse, C.W.; Silin, V.; Plant, A.L., Langmuir 1998, 14, 69166923.Google Scholar
16. Kobayashi, M.; Sakashita, M. J. Chem. Phys. 1992, 96, 748760.Google Scholar
17. Dissanayake, M.A.K.L.; Frech, R. Macromolecules 1995, 28, 53125319.Google Scholar
18. Laibinis, P.; Bain, C.D.; Nuzzo, R.G.; Whitesides, G.M., J. Phys. Chem. 1995, 99, 7663.Google Scholar
19. Vanderah, D.J.; Gates, R.S.; Silin, V.; Meuse, C.W.; Zeiger, D.N.; Valincius, G. Langmuir, submitted.Google Scholar
20. Vanderah, D.J.; Pham, C.P.; Springer, S.K.; Silin, V.; Meuse, C.W., Langmuir 2000, 16, 6527.Google Scholar
21. The specification of commercial products is for clarity only and does not constitute endorsement by NIST.Google Scholar
22. HRMS: (EO)6CH3 characterized by HRMS as reported earlier.14 (EO)5CH3:HR FAB [M + 1]+calcd for C11H25O5S 269.14227; found 269.14309. (EO)4CH3: HR FAB [M + 1]+ calcd for C9H21O4S 225.11606; found 225.11533. (EO)3CH3: HR FAB no mass found for C7H16O3S; [M + 1]+ found for disulfide, calcd for C14H31O6S2 359.15622; found 359.15418. 270 MHz 1H NMR for x = 3 - 5; δ 2.70 (relative to tetramethylsilane), 2H, dt, J ≈ 6.5 Hz and 6.2 Hz; HSCH2CH2O)xCH3; 3.38, 3H, s, HSCH2CH2O)xCH3.Google Scholar
23. Miyazawa, T.; Fukushima, K.; Ideguchi, Y. J. Chem. Phys. 1962, 37, 2764.Google Scholar
24. Bailey, F.E. Jr; Koleske, J.Y., Poly(ethylene oxide), Academic Press: New York, 1976, p 115.Google Scholar
25. Takahashi, Y.; Tadokoro, H. Macromolecules 1973, 23, 672675.Google Scholar