Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T08:48:00.030Z Has data issue: false hasContentIssue false

Growth and Integration of High-Density CNT for BEOL Interconnects

Published online by Cambridge University Press:  01 February 2011

Ainhoa Romo Negreira
Affiliation:
IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Daire J. Cott
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Anne S. Verhulst
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Santiago Esconjauregui
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Nicolo′ Chiodarelli
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Johan Ek Weis
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Caroline M. Whelan
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Guido Groeseneken
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Marc Heyns
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Stefan De Gendt
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Philippe M. Vereecken
Affiliation:
[email protected], IMEC, AMPS/NANO, Kapeldreef 75, Leuven, B-3001, Belgium, +32 16 28 8330, +32 16 28 1576
Get access

Abstract

The integration of high-density CNT bundles as via interconnects in a CNT/Cu-hybrid BEOL stack is evaluated. CNT via-conduits may greatly improve heat dissipation and as such lower interconnect resistance and improve electromigration resistance. Each carbon shell of the nanotube contributes to electrical and thermal conduction and densities as high as 5×1013 shells per cm2 are estimated necessary. CNT growth processes on BEOL compatible metals are presented with tube densities up to 1012cm−2 and shell densities approaching 1013 cm−2 on blanket substrates. Selective growth of CNT bundles with carbon shell densities around 1012cm−2 is demonstrated with high yield. Ohmic behavior of TiN/CNT/Ti contacts is shown with a CNT via resistivity of 1.2 mΩ cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saito, R., Dresselhaus, G., Dresselhaus, M. S.. Physical Properties of Carbon Nanotubes Imperial College Press, London (1998)Google Scholar
2. Qin, Lu-Chang, Zhao, Xinluo, Hirahara, Kaori, Miyamoto, Yoshiyuki, Ando, Yoshinori, Iijima, Sumio. Nature, 408, 50 (2000).Google Scholar
3. Verhulst, A. S., Bamal, M., Groeseneken, G., IMEC internal report (2005).Google Scholar
4. Srivastava, N., Joshi, R. V. and Banerjee, K., Carbon Nanotube Interconnects: Implications for Performance, Power Dissipation and Thermal Management, IEDM (2005)Google Scholar
5. Li, Hong, Srivastava, Navin, Mao, Jun-Fa, Yin, Wen-Yan and Banerjee, Kaustav, Carbon Nanotube Vias: A Reality Check, IEEE (2007)Google Scholar
6. , Raychowdhury and Roy, K., Carbon Nanotubes as Interconnects of the Future: A Circuit Perspective, Proc. of the Advanced Metallization Conference, San Diego, October 2004 Google Scholar
7. Li, S., Yu, Z., Rutherglen, C., and Burk, P.J., Nano Lett. 4, 2003 (2004).Google Scholar
8. Park, J-Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Üstünel, H., Braig, S., Arias, T.A., Brouwer, P.W., and McEuen, P.L., Nano Lett. 4, 517 (2004).Google Scholar
9. Huang, Z.P., Wang, D.Z., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Appl Phys A 74, 387 (2002).Google Scholar
10. Cantoro, M., Hofmann, S., Pisana, S., Ducati, C., Parvez, A., Ferrari, A.C., Robertson, J., Diamond and Rel. Mat. 15, 1029 (2006)Google Scholar
11. Zhang, G. et al. PNAS 102, 16141 (2005)Google Scholar
12. Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A., Ducati, C., Ferrari, A.C., Blackburn, A.M., Wang, K.Y., Robertson, J., Nano Lett 6, 1107 (2006)Google Scholar
13. Zhong, G. F., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., Kawarada, H., Jpn. J. Appl. Phys. 1 44, 1558 (2005).Google Scholar
14. Arcos, T. de los, Garnier, M. G., Oelhafen, P., Mathys, D., Seo, J. W., Domingo, C., Garcιa-Ramos, J. V., Sanchez-Cortes, S.. Carbon 42, 187 (2004).Google Scholar
15. Cott, D.J., Vereecken, P.M., Negeira, A.R., Griffiths, H., DeGendt, S., (in preparation)Google Scholar
16. Negreira, A. Romo, Vereecken, P.M., Whelan, C. M., Maex, K., ECS transactions, 2, 409 (2007).Google Scholar
17. Esconjauregui, S., Whelan, C.M. and Maex, K., Nanotechnol. 18, 015602 (2007).Google Scholar
18. Esconjauregui, S., Whelan, C.M. and Maex, K., Nanotechnol. 19, 135306 (2008).Google Scholar
19. Awano, Y., Sato, S., Kondo, D., Ohfuti, M., Kawabata, A., Nihei, M., Yokoyama, N., Phys. Stat. Sol. A 203, 14 (2006).Google Scholar
20. Yokoyama, D., Iwasaki, T., Yoshida, T., Kawarada, H., Sato, S., Hyakushima, T., Nihei, M., Awano, Y., APL 91, 263101 (2007).Google Scholar