Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:29:58.196Z Has data issue: false hasContentIssue false

Growth and Characterization of ZnO Nanonail

Published online by Cambridge University Press:  26 February 2011

H. W. Seo
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
D. Wang
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
Y. Tzeng
Affiliation:
Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849
N. Sathitsuksanoh
Affiliation:
Department of Chemical Engineering, Auburn University, Auburn, AL 36849
C. C. Tin
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
M. J. Bozack
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
J. R. Williams
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
Get access

Abstract

Zinc oxide (ZnO) is an interesting material for short-wavelength optoelectronics due to its wide band gap. The nanostructures of ZnO are also intriguing since a variety of morphology can be obtained by employing different processing parameters. In our laboratory, ZnO nanonails were successfully synthesized at low temperature using a thermal chemical vapor deposition. The morphology of the sample was studied by using scanning electron microscopy. The shape of the nail head can be controlled from hexagon to quasi-circular shape. X-ray diffraction, Raman scattering, photoluminescence spectroscopy were also performed to analyze the ZnO nanonail. Photoluminescence spectroscopy suggested that the defects in the ZnO nanonail and nanobone are of different nature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Roy, S., Basu, S., Bull. Mater. Sci. 25, 513 (2002).Google Scholar
2 Katoh, R., Furube, A., Hara, K, Murata, S., Sugihara, H., Arakawa, H., and Tachiya, M., J. Phys. Chem B 106, 12957 (2002).Google Scholar
3 Sharma, P., Kumar, S., and Sreenivas, K., J. Mater. Res. 18, 545 (2003)Google Scholar
4 Ohashi, N., Kataoka, K., Ohgaki, T., Miyagi, T., Haneda, H., Morinaga, K., Appl. Phys. Lett. 83, 4857 (2003).Google Scholar
5 Lee, C. Y., Tseng, T. Y., Li, S. Y., and Lin, P., Tamkang J. Sci. Eng, 6, 127 (2003).Google Scholar
6 Lauhon, Cui.Y., Gudiksen, L.J., Wang, M.S., and Lieber, J., Appl. Phys. Lett. 78, 2214 (2001).Google Scholar
7 Park, W. I., Kim, D.H., Jung, S. W., and Yi, G-C., Appl. Phys. Lett. 80, 4232 (2002).Google Scholar
8 Park, W. I., Jun, Y.H., Jung, S. W., and Yi, G-C., Appl. Phys. Lett. 82, 964 (2003).Google Scholar
9 Liu, X., Wu, X. H., Cao, H., and Chang, R. P. H., J. Appl. Phys. 95, 3141 (2004).Google Scholar
10 Zhang, B.P., Binh, N.T., Segawa, Y., Wakatsuki, K., Usami, N., Appl. Phys. Lett. 83, 1635 (2003).Google Scholar
11 Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C. M., Nature, 409, 66 (2001).Google Scholar
12 Wong, E. M., Searson, P. C., Appl. Phys. Lett. 74, 2939 (1999).Google Scholar
13 Wan, Q., Lin, C. L., Yu, X. B., and Wang, T. H., Appl. Phys. Lett. 84, 124 (2004).Google Scholar
14 Yao, B. D., Chan, Y. F., and Wang, N., Appl. Phys. Lett. 81, 757 (2002).Google Scholar
15 Lao, J. Y., Huang, J. Y., Wang, D. Z., and Ren, Z. F., Nano Lett. 3, 235 (2002).Google Scholar
16 Lauhon, Cui.Y., Gudiksen, L.J., Wang, M.S., and Lieber, J., Appl. Phys. Lett. 78, 2214 (2001).Google Scholar
17 Lee, C. Y., Tseng, T. Y., Li, S. Y., and Lin, P., Tamkang J. Sci. Eng, 6, 127 (2003).Google Scholar
18 Ohring, M., “The Material Science of Thin Film”, 1st ed. (Academic, London, 1992)Google Scholar
19 Wang, R. P., Xu, G., and Jin, P., Phys. Rev. B 69, 113303 (2004).Google Scholar
20 Gomi, M., Oohira, N., Ozaki, K., and Koyano, M., Jpn. J. Appl. Phys. 42, 481 (2003).Google Scholar
21 Kong, Y. C., Yu, D. P., Zhang, B., Fang, W., and Feng, S. Q., Appl. Phys. Lett. 78, 407 (2001).Google Scholar
22 Wang, L. and Giles, N. C., J. Appl. Phys. 94, 973 (2003).Google Scholar
23 Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. K., Voigt, J. A., and Gnade, B. E., J. Appl. Phys. 79, 7983 (1996).Google Scholar
24 Liu, M., Kitai, A. H., and Mascher, P., J. Lumin. 54, 35 (1992).Google Scholar
25 Ng, H. T., Chen, B., Li, J., Han, J., Meyyappan, M., Wu, J., Li, S. X., and Haller, E. E., Appl. Phys. Lett. 82, 2023 (2003).Google Scholar