Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T03:56:06.156Z Has data issue: false hasContentIssue false

Growth and Characterization of CDTE and CDTE Alloys

Published online by Cambridge University Press:  21 February 2011

S. Mcdevitt
Affiliation:
II-VI Incorporated, 375 Saxonburg Boulevard, Saxonburg, PA 16056
D.R. John
Affiliation:
II-VI Incorporated, 375 Saxonburg Boulevard, Saxonburg, PA 16056
J.L. Sepich
Affiliation:
II-VI Incorporated, 375 Saxonburg Boulevard, Saxonburg, PA 16056
K.A. Bowers
Affiliation:
North Carolina State University, Department of Physics, Raleigh, NC 27695
J.F. Schetzina
Affiliation:
North Carolina State University, Department of Physics, Raleigh, NC 27695
R.S. Rai
Affiliation:
Carnegie Mellon University, Department of Metallurgical Engineering and Materials Science, Pittsburgh, PA 15023
S. Mahajan
Affiliation:
Carnegie Mellon University, Department of Metallurgical Engineering and Materials Science, Pittsburgh, PA 15023
Get access

Abstract

Methods used to grow bulk, CdTe crystals, effects of alloying on their perfection and typical single crystal properties are reviewed in this paper. Crystals grown by a modified horizontal Bridgman technique have lower dislocation densities than those grown by a modified vertical Bridgman method. Dislocation densities of the order of 1×103/cm2 have been observed in CdTeSe crystals grown by the former technique. Due to the difference in the distribution coefficients of Zn and Se in CdTe, CdTeSe ingots are chemically more uniform than CdZnTe ingots. Purity studies of starting materials indicate that Se substitutions may introduce more impurities than Zn additions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Triboulet, R., Duy, T. Nguyen and Durand, A., J. Vac. Sci. Technol. A3 (1), 95 (1985).Google Scholar
2. Colombo, Luigi, Syllaios, A.J., Perlaky, R.W., and Brau, M.J., Ibid., 100 (1985).Google Scholar
3. Dutt, B.V., Mahajan, S.. Roedel, R.J., Schwartz, G.P., Miller, D.C. and Derick, L., J. Electrochem Soc. 128 (1981) 1573.Google Scholar
4. Faurie, J.P., Million, A. and Piaguet, J., J. Crystal Growth 59 (1982) 10.Google Scholar
5. Brown, P.D., Hails, J.E., Russell, G.J. and Woods, J., Appl. Phys. Letters 50 (1987) 1144.Google Scholar
6. Bubulac, L.O., Tennant, W.E., Edwall, D.D., Gertner, E.R. and Robinson, J.C., J. Vacuum Sci. Technol. A3 (1985) 163.Google Scholar
7. Triboulet, R., Presented at Fourth International Conference on II-VI Compounds, Berlin (West), September 1989.Google Scholar
8. Wood, R.A., Schmit, J.L., Chung, H.K., Magee, T.J. and Woolhouse, G.R., J. Vac. Sci. Tech. A3 93 (1985); G.R. Woolhouse, T.J. Magee, H.A. Kawayashi, C.S.H. Leung, and R.D. Ormond, ibid., A3 83 (1985).Google Scholar
9. , Wooley and , Ray, J. Phys. Chem. Solids 13, 151 (1960).Google Scholar
10. Woolhouse, G.R., Kawayashi, H., and Magee, T.J., Proceedings of the Sixth Conference on Crystal Growth/AACG, Fallen Leaf Lake, CA, 1982.Google Scholar
11. Ebina, A. and Takahashi, T., J. Cryst. Growth 59, 51 (1982).Google Scholar
12. Carlson, R.A., Hager, R.J., and Wood, R.A., J. Vac. Sci. Technol. A5, 3048 (1987).Google Scholar
13. McDevitt, S., Dean, B., Nichols, D., Myers, T.H., Green, R.W., presented at the Second Eastern Regional Conference on Crystal Growth/AACG-East, Atlantic City, NJ, 1988 (unpublished).Google Scholar
14. Pfann, W.G., Zone Melting, Robert El Krieger Publishing Co., Huntington NY, 11 (1978).Google Scholar
15. Sher, Ariel, Eger, D. and Raizman, A., J. Crystal Growth 43, 507 (1987).Google Scholar
16. Sher, Arden, Chen, An-Ban, Spicer, W.E., and Shih, C-K, J. Vac. Sci. Technol. A3, 105 (1985).Google Scholar
17. Nakagawa, K., Maeda, K., and Takeuchi, S., J. Phys. Soc. Japan 49, 1909 (1980).Google Scholar
18. McDevitt, S., Dean, B.E., Ryding, D.G., Scheltens, F.J. and Mahajan, S., Materials Letters 4, 451 (1986).Google Scholar
19. Bell, S.L. and Sen, S., J. Vac. Sci. Tech. A3, 112 (1985).Google Scholar
20. Dean, B.E., Johnson, C.J., Kramer, F.J., Evaluation of Techniques for Purity Analysis of II-VI Compound Materials, presented at the AACG/ Third Workshop on Purification of Materials for Crystal Growth and Glass Processing, Orlando, FL, 1989 (unpublished).Google Scholar
21. Charles Evans & Associates, Redwood City, CA.Google Scholar
22. VHG Labs., Inc., Manchester, NH.Google Scholar
23. Lay, K.Y., Giles-Taylor, N.C., Schetzina, J.F., and Bachmann, K.J., J. Electrochem. Soc. 133 5, 1049 (1986).Google Scholar
24. Shahid, M.A., McDevitt, S., Mahajan, S. and Johnson, C.J., Inst. Phys. Conf. 87, 321 (1987).Google Scholar
25. Shin, S.H., Bajaj, J., Moudy, L.A. and Cheung, D.T., Apply. Phys Lett. 43, 68 (1983).Google Scholar
26. Schaake, H.F., Tregilas, J.H., Lewis, A.J. and Evert, P.M., J. Vac. Sci. Technol. A1, 1625 (1983).Google Scholar