Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T14:01:36.406Z Has data issue: false hasContentIssue false

Growth and Characterization of a-plane In0.2Ga0.8N/ GaN hetrostructures on r-Sapphire

Published online by Cambridge University Press:  19 December 2014

Shruti Mukundan
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India.
Lokesh Mohan
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India.
Greeshma Chandan
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India.
Basanta Roul
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India. Central Research Laboratory, Bharat Electronics, Bangalore, India
S.B.Krupanidhi*
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore, India.
*
Get access

Abstract

Non-polar a-plane InGaN films were grown on a r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The growth temperature and Indium flux were varied to optimize the desired composition of In0.23Ga0.77N on the (11-20) a-plane GaN epilayer grown on a (1-102) r-plane sapphire substrate. The structural, morphological and optical properties of the optimized composition have been studied. It was found that highly a-axis oriented InGaN epilayers with no phase separation can be grown at 540 °C with In/Ga flux ratio of 0.72. The composition of indium incorporation in single phase InGaN films was found to be 23% as estimated by high resolution X-ray diffraction. The room temperature band gap energy of single phase InGaN layers was determined by photoluminescence measurement and found to be around 2.56 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dingle, R., Sell, D.D., Stokowski, S.E.,and Ilegems, M., Phys. Rev. B 4, 415 (1971).CrossRefGoogle Scholar
Butcher, K.S.A., Tansley, T.L., Superlattices and Microstructures 38 137 (2005).CrossRefGoogle Scholar
Neufeld, Carl J., Toledo, Nikholas G., Cruz, Michael Iza, Samantha C., DenBaars, Steven P. and Mishra, Umesh K., Appl. Phys. Lett. 93, 143502 (2008).CrossRefGoogle Scholar
Adachi, M., Yoshizumi, Y., Enya, Y., Kyono, T., Sumitomo, T., Tokuyama, S., Takagi, S., Sumiyoshi, K., Saga, N., Ikegami, T., Ueno, M., Katayama, K., Nakamura, T., Appl. Phys. Exp. 3, 121001 (2010)CrossRefGoogle Scholar
Detchprohm, Theeradetch, Zhu, Mingwei, Li, Yufeng, Xia, Yong, Wetzel, Christian, Preble, Edward A., Liu, Lianghong, Paskova, Tanya, and Hanser, Drew, Appl. Phys. Lett. 92, 241109 (2008).CrossRefGoogle Scholar
El-Masry, N. A., Piner, E. L., and Liu, S. X. Bedair, S. M., Appl. Phys. Lett. 72(1), 5 January (1998)CrossRefGoogle Scholar
Pantha, B. N., Li, J., Lin, J. Y., and Jiang, H. X., Applied Physics Letters 96, 232105 (2010)CrossRefGoogle Scholar
Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, 3432, (1975).CrossRefGoogle Scholar
Moses, P.G. and Van de Walle, C.G., Appl. Phys. Lett, 96(2): p. 021908 (2010).CrossRefGoogle Scholar
Wu, J., et al. ., Appl. Phys. Lett., 80(25): p. 4741 (2002).CrossRefGoogle Scholar
Varshni, Y. P., Physica(Utrecht) 34, 149 (1967).Google Scholar
Leroux, M., Grandjean, N., Beaumont, B., Nataf, G., Semond, F., Massies, J. and Gilbart, P., J. Appl. Phys. 86, 3721 (1996).CrossRefGoogle Scholar