Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:11:04.154Z Has data issue: false hasContentIssue false

Groundwater Colloid Properties and their Potential Influence on Radionuclide Transport

Published online by Cambridge University Press:  03 September 2012

C. Degueldre*
Affiliation:
Paul Scherrer Institute, LWV & PE, 5232 Villigen, Switzerland. Also, Centre des Sciences Naturelles de l'Environnement, University of Geneva.
Get access

Abstract

Colloid facilitated transport is still an issue in radioactive waste management. Sophisticated phenomenological transport models are available, but progress is required to fully understand mechanisms and parameters. This study lead in this direction. Investigation of the marl groundwater colloids in steady-state conditions at Wellenberg, shows that their concentration is independent of the water flow rate. Their generation is caused by the re-suspension of the rock clay fraction only. The re-suspension process is presently being studied under flow transient conditions. Extension of our measurements to other safety relevant systems as well as a literature survey show that the colloid concentration under steady-state conditions is correlated to the concentration of alkali elements and earth alkali elements. The higher their respective concentration, the fewer colloids are occurring. Considerations on colloid contamination models are also included. The paper emphasises various colloid transport mechanisms including colloid generation from the irreversibly contaminated aquifer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Degueldre, C.. Colloid properties in granitic groundwater systems, with emphasis on the impact on safety assessment of a radioactive waste repository. Mat. Res. Soc. Symp. Proc. 294 (1993) 817823.10.1557/PROC-294-817Google Scholar
2. McCarthy, J., Degueldre, C.. Sampling and characterisation of colloids in groundwater for studying their role in the subsurface transport of contaminants. In characterisation of environmental particles. Buffle, J. and van Leeuwen, H.P. Eds. IUPAC Environmental Analytical Chemistry Series Vol. II Chapt. 6, 247315.Google Scholar
3. McCarthy, J., Zachara, J.. Subsurface transport of contaminants. Environ. Sci. Technol. 23 (1989) 496503.Google Scholar
4. NAGRA: Geologische Grundlagen und Datensatz zur Beurteilung der langzeitsicherheit des Endlagers für schwach- und mittelaktive Abfälle am Standort Wellenberg. NAGRA technischer Bericht NTB 93–28, Wettingen, Switzerland (1993).Google Scholar
5. Ryan, J., Elimelech, M.. Colloid mobilization and transport in groundwater. Colloids and Surfaces 107 (1996) 156.10.1016/0927-7757(95)03384-XGoogle Scholar
6. Smith, P., Degueldre, C.. Colloid facilitated transport of radionuclides through fractured media. J. Contam. Hydrol. 13 (1993) 143166.10.1016/0169-7722(93)90055-WGoogle Scholar
7. McDowell-Boyer, L., Hunt J., J., Sitar, N.. Particle transport through porous media. Water Resour. Res. 22 (1986) 19011921.10.1029/WR022i013p01901Google Scholar
8. Vilks, P., Degueldre, C.. Sorption behaviour of 85Sr, 131I and 137Cs on colloids and suspended particles from the Grimsel Test Site, Switzerland. Appl. Geochem. 6 (1991) 553563.10.1016/0883-2927(91)90054-SGoogle Scholar
9. Laaksoharju, M., Degueldre, C., Skarman, C.. (1995) Studies of colloids and their importance for repository performance assessment. SKB Technical report 95–24, Stockholm, Sweden.Google Scholar
10. Vilks, P., Cramer, J., Baschinski, D., Doern, D., Miller, H.. Studies of colloids and suspended particles, Cigar lake uranium deposit, Saskatchewan, Canada. Appl. Geochem. 8 (1993) 605616.10.1016/0883-2927(93)90016-AGoogle Scholar
11. Laaksoharju, M., Vuorinen, U., Snellman, M., Allard, B., Petterson, C., Helenius, J., Hinkkanen, H.. Colloids or artefacts? A TVO/SKB co-operation project in Olkiluoto, Finland. Report YJT-94–01. TVO, Helsinki, Finland (1994).Google Scholar
12. Triay, I., Degueldre, C., Wistrom, A., Cotter, C., Lemos, W.. Progress report on colloid facilitated transport at Yucca Montain. LANL report LA-12959-MS, May 1996, Los Alamos, NM.Google Scholar
13. Pedersen, K., Arlinger, J., Bruetsch, R., Degueldre, C., Hallbeck, L., Laaksoharju, M., Lutz, T., Petterson, C.. Bacteria, colloids and organic carbon in groundwater at the Bangombé site in the Oklo area. SKB Technical Report 96–01, 1996, Stockholm, Sweden, Also in EC report EUR 16704 EN, Bruxelles, CEC, 1996.Google Scholar
14. Degueldre, C., Pfeiffer, H.R., Alexander, R., Wernli, B., Bruetsch, R.. Colloid properties in granitic groundwater systems I: sampling and characterisation. Appl. Geochem. 11 (1996) 677695.10.1016/S0883-2927(96)00036-4Google Scholar
15. Degueldre, C., Grauer, R., Laube, A., Oess, A., Silby, H.. Colloid properties in granitic groundwater systems II: stability and transport study. Appl. Geochem. 11 (1996) 697710.10.1016/S0883-2927(96)00035-2Google Scholar
16. Kim, J., Zeh, P., Delakovitz, . Chemical interactions of actinide ions with groundwater colloids in Gorleben aquifer systems. Radiochim. Acta 58/59, (1992) 147154.10.1524/ract.1992.5859.1.147Google Scholar
17. Miekeley, N., Countinho de Jesus, H., Porto da Silveira, C., Degueldre, C.. Chemical and physical characterization of suspended particles and colloids in waters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Pocos de Caldas, Brasil. J. Geochem. Exploration, 45 (1992) 409437.10.1016/0375-6742(92)90133-SGoogle Scholar
18. Swanton, S.. Modelling colloid transport in groundwater, the prediction of colloid stability and retention behaviour. Adv. Coll. Interf. Sci. 54 (1995) 129208.10.1016/0001-8686(95)90146-6Google Scholar
19. Bradbury, M., Baeyens, B.. A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-montmorillonite. PSI Bericht Nr 95 10,11 &12, Jul. 1995 Paul Scherrer Institute, Villigen, Switzerland.Google Scholar
20. Degueldre, C., Ulrich, H.J., Silby, H.. Sorption of 241Am onto montmorillonite, illite, and hematite colloids. Radiochim. Acta 65 (1994) 173179.10.1524/ract.1994.65.3.173Google Scholar
21. Newton, T., Hobart, D., Palmer, P.. The formation of Pu(IV)-colloid by alpha-reduction of Pu(V) or Pu(VI) in aqueous solutions. Radiochim. Acta 39 (1986) 139147.10.1524/ract.1986.39.3.139Google Scholar