Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T07:52:49.954Z Has data issue: false hasContentIssue false

A Grain Boundary Engineering Approach to Materials Reliability

Published online by Cambridge University Press:  10 February 2011

G. Palumbo
Affiliation:
Materials Technology Department, Ontario Hydro Technologies, 800 Kipling Avenue, KR270, Toronto, Canada, M8Z 5S4
E. M. Lehockey
Affiliation:
Materials Technology Department, Ontario Hydro Technologies, 800 Kipling Avenue, KR270, Toronto, Canada, M8Z 5S4
P. Lin
Affiliation:
Materials Technology Department, Ontario Hydro Technologies, 800 Kipling Avenue, KR270, Toronto, Canada, M8Z 5S4 Dept. of Metallurgy and Materials Science, University of Toronto, Toronto, Canada M5S 1A4
U. Erb
Affiliation:
Materials Technology Department, Ontario Hydro Technologies, 800 Kipling Avenue, KR270, Toronto, Canada, M8Z 5S4 Dept. of Materials and Metallurgical Engineering, Queen's University, Kingston, Canada K7L, 3N6
K. T. Aust
Affiliation:
Dept. of Metallurgy and Materials Science, University of Toronto, Toronto, Canada M5S 1A4
Get access

Abstract

Intergranular degradation processes, (e.g., corrosion, stress corrosion, cracking, creep cracking) are a frequent cause of premature and unpredictable service failure of engineering components. Recent advances in (1) understanding structure-property relationships for grain boundaries, and (2) characterization techniques for grain boundaries in polycrystalline materials, have provided the means for improved component lifetime prediction, and the opportunity to engineer intergranular-degradation resistant microstructures.

In this work, we present our previously developed geometric models for grain boundary structure and grain size effects on intergranular degradation susceptibility. Specific examples are presented of the successful application of the ‘grain boundary engineering’ approach to the prediction and mitigation of intergranular corrosion, stress corrosion cracking, and creep cracking in Ni-based materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Palumbo, G., and Aust, K.T., in Materials Interfaces (Wolf, D. and Yip, S. eds.), Chapman and Hall, London, 1992, p. 190.Google Scholar
2. Kronberg, M.L. and Wilson, F.H.. Trans. TMS-AIME, 185, 501 (1949).Google Scholar
3. Brandon, D.G., Acta Metall., 14, 1479 (1966).Google Scholar
4. Adams, B., Wright, S. and Kunze, K.. Met. Trans. A, 24, 819 (1993);Google Scholar
Venables, J.A. and Harland, C.J., Phil. Mag., 27, 1193 (1973).Google Scholar
5. Palumbo, G., King, P.J., Aust, K.T., Erb, U., and Lichtenberger, P.C., Scripta Metall., 25, 1775, (1991).Google Scholar
6. Cheung, C., Erb, U. and Palumbo, G.. Mat. Sci. Eng. A185, 39 (1994).Google Scholar
7. Palumbo, G., Lichtenberger, P.C., Gonzalez, F. and Brennenstuhl, A.M.. “Metal Tube Having a Section With an Internal Electroformed Structural Layer” US Patent No. 5,538,615. July 23, 1996.Google Scholar
8. Palumbo, G., Lichtenberger, P.C., Gonzalez, F. and Brennenstuhl, A.M.. “Process and Apparatus for In-Situ Electroforming a Structural Layer of Metal Bonded to an Internal Wall of a Metal Tube” US Patent No. 5,516,415. May 14, 1996.Google Scholar
9. Gonzalez, F., Brennenstuhl, A.M., Palumbo, G., Erb, U. and Lichtenberger, P.C., Materials Science Forum, 225–227, 831 (1996).Google Scholar
10. Palumbo, G., Brennenstuhl, A.M., Gonzalez, F. and Lin, P.. Ontario Hydro Research Division Report No. A-NSG-94–17-K (1994).Google Scholar
11. Palumbo, G.. “Thermomechanical Processing of Metallic Materials”, US Patent Allowed August 1996.Google Scholar
12. Palumbo, G., Aust, K.T., Erb, U., King, P.J., Brennenstuhl, A.M. and Lichtenberger, P.C., Phys. Stat. Sol. a, 131, 425 (1992).Google Scholar
13. Lin, P., Palumbo, G. and Aust, K.T.. Scripta Metall, et Mater, (accepted for publication).Google Scholar
14. Lehockey, E.M., Palumbo, G., Lin, P. and Brennenstuhl, A.M.. Scripta Metall, et Mater, (submitted for publication).Google Scholar
15. Lehockey, E.M., Palumbo, G., Lin, P. and Brennenstuhl, A.M., in Proceedings of Microscopy and Microanalysis 1996 (Bailey, G.W. et al. eds.) San Francisco Press Inc. (1996) p. 346.Google Scholar
16. Lin, P., Palumbo, G., Erb, U. and Aust, K.T., Scripta Metall, et Mater., 33, 1387 (1995).Google Scholar
17. American Society for Testing and Materials (ASTM) Annual Book of Standards G28–85, 91 (1985).Google Scholar
18. Bennett, B.W. and Pickering, H.W., Met. Trans. A, 18, 1117 (1987).Google Scholar
19. Kokawa, H. and Kuwana, T., Trans. Japan Welding Society, 23, 11 (1992).Google Scholar
20. Chalmers, B., Physical Metallurgy, J. Wiley and Sons, Inc. London (1959).Google Scholar
21. Palumbo, G., Thorpe, S.J. and Aust, K.T., Scripta Metall., 24, 1347 (1990).Google Scholar
22. Galford, J., private communication (1996).Google Scholar
23. Fleck, R.G., Cocks, C.J., and Taplin, D.M.R., Met. Trans. 1, 3415 (1970).Google Scholar
24. Palumbo, G., Gonzalez, F., Krstic, V. and Erb, U., to be published.Google Scholar
25. Mutschele, T. and Kirchheim, R., Scripta Metall., 21, 1101 (1987).Google Scholar
26. Coble, R.L., J. Appl. Phys., 34, 1679 (1960).Google Scholar