Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:59:30.707Z Has data issue: false hasContentIssue false

Giant Magnetoresistance and Oscillation in Epitaxial Fe/Cr(111) Multilayers

Published online by Cambridge University Press:  15 February 2011

Wen-C. Chiang
Affiliation:
Dept. of Physics, Indiana University, Bloomington, IN 47405
David V. Baxter
Affiliation:
Dept. of Physics, Indiana University, Bloomington, IN 47405
Yang-Tse Cheng
Affiliation:
General Motors Research and Development Center, Warren, MI 48090
Get access

Abstract

We report on the first studies of the giant magnetoresistance and oscillatory coupling in epitaxial Fe/Cr(111) multilayers. A series of samples were grown on hydrogen terminated Si(111) substrates at room temperature by UHV electron beam evaporation; with the thickness of Fe layer fixed at 30 Å, and the thickness of Cr layer varied from 10–47 Å. Giant magnetoresistance (GMR) is observed at 4.2 Å in these samples, with a maximum value of 13% for a Cr layer thickness of 13 Å. The associated oscillatory coupling is comparable to that reported in other crystallographic orientations in terms of both its period and phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M. N., Broto, J. M., Fert, A., Dau, F. Nguyen Van, Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
3. Unguris, J., Celotta, R. J., and Pierce, D. T., Phys. Rev. Lett. 67, 140 (1991).Google Scholar
4. Purcell, S. T., Folkerts, W., Johnson, M. T., McGee, N. W. E., Jager, K., Stegge, J. ann de, Zeper, W. B., Hoving, W., and Grunberg, P., Phys. Rev. Lett. 67, 903 (1991).Google Scholar
5. Fullerton, E. E., Conover, M. J., Mattson, J. E., Sowers, C. H., and Bader, S. D., Phys. Rev. B 48, 15755 (1993).Google Scholar
6. Mattson, J. E., Brubaker, M. E., Sowers, C. H., Conover, M., Qiu, Z., and Bader, S. D., Phys. Rev. B44, 9378 (1991).Google Scholar
7. Folkerts, W., Hoving, W., and Coene, W., J. Appl. Phys. 71, 362 (1992).Google Scholar
8. Gijs, M. A. M., Lenczowski, S. K., and Giesbers, J. B., Phys. Rev. Lett. 70, 3343 (1993).Google Scholar
9. Wang, Y., Levy, P. M., and Fry, J. L., Phys. Rev. Lett. 65, 2732 (1990).Google Scholar
10. Bruno, P. and Chappert, C., Phys. Rev. Lett. 67, 1602 (1991).Google Scholar
11. Herman, F. and Schrieffer, R., Phys. Rev. B46, 5806 (1992).Google Scholar
12. Stiles, M. D., Phys. Rev. B48, 7238 (1993).Google Scholar
13. Fert, A. and Bruno, P., in Ultrathin Magnetic Structures II, ed. by Heinrich, B. and Bland, J. A. C., (Springer Verlag, Berlin, 1994), pp. 82117.Google Scholar
14. Kittel, C., in Solid State Physics, ed. by Seitz, F., Turnbull, D., and Ehrenreich, H., (Academic, New York, 1968) 22, pp. 126.Google Scholar
15. Parkin, S. S. P., Phys. Rev. Lett. 67, 3598 (1991).Google Scholar
16. Munoz, M. C., and Perez-Diaz, J. L., Phys. Rev. Lett. 72 2482 (1994).Google Scholar
17. Ortega, J. E., Himpsel, F. J., Mankey, G. J., and Willis, R. F., Phys. Rev. B47 1540 (1993).Google Scholar
18. Gijs, M. A. M., and Okada, M., Phys. Rev. B 46 2908 (1992).Google Scholar
19. Chen, Y-T, Chen, Y-L, Meng, W-J, and Li, Y., Phys. Rev. B 48 14729 (1993).Google Scholar
20. Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar