Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T08:33:29.775Z Has data issue: false hasContentIssue false

Germanium Island Size Distribution by Atomistic Simulation

Published online by Cambridge University Press:  01 February 2011

Richard J. Wagner
Affiliation:
Department of Chemical Engineering, University of Michigan Ann Arbor, MI 48103, U.S.A.
Erdogan Gulari
Affiliation:
Department of Chemical Engineering, University of Michigan Ann Arbor, MI 48103, U.S.A.
Get access

Abstract

Strained epitaxial growth of Ge on Si(001) produces self-assembled, nanometer scale islands, or quantum dots. We study this growth by atomistic simulation, computing the energy of island structures to determine when and how islanding occurs. The distribution of island sizes on a surface is determined by the relation of island energy to size. Applying the calculated chemical potential to the Boltzmann-Gibbs distribution, we predict size distributions as functions of coverage and temperature. The peak populations around 80 000 atoms (35 nm wide) compare favorably with experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mo, Y.-W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
2. Liu, B., Berrie, C. L., Kitajima, T., Bright, J., and Leone, S. R., J. Vac. Sci. Technol. B 20, 678 (2002).Google Scholar
3. Drucker, J., IEEE J. Quantum Electron. 38, 975 (2002).Google Scholar
4. Vailionis, A. et al., Phys. Rev. Lett. 85, 3672 (2000).Google Scholar
5. Kamins, T. I., Medeiros-Ribeiro, G., Ohlberg, D. A. A., and Williams, R. S., J. App. Phys. 85, 1159 (1999).Google Scholar
6. Raiteri, P., Migas, D. B., Miglio, L., Rastelli, A., and von Kanel, H., Phys. Rev. Lett. 88, 256103 (2002).Google Scholar
7. Tersoff, J., Phys. Rev. B 39, 5566 (1989).Google Scholar
8. Balamane, H., Halicioglu, T., and Tiller, W. A., Phys. Rev. B 46, 2250 (1992).Google Scholar
9. Moriguchi, K. and Shintani, A., Jpn. J. Appl. Phys. 37, 414 (1998).Google Scholar
10. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C, Cambridge University Press, 1997.Google Scholar
11. Wagner, R. J., Growth Energetics of Germanium Quantum Dots by Atomistic Simulation (Ph.D. dissertation, University of Michigan, 2004).Google Scholar
12. Rickman, J. M. and Srolovitz, D. J., Surf. Sci. 284, 211 (1993).Google Scholar
13. Shchukin, V. A., Ledentsov, N. N., Kop'ev, P. S., and Bimberg, D., Phys. Rev. Lett. 75, 2968 (1995).Google Scholar
14. Medeiros-Ribeiro, G., Bratkovski, A. M., Kamins, T. I., Ohlberg, D. A. A., and Williams, R. S., Science 279, 353 (1998).Google Scholar
15. Shchukin, V. A., Ledentsov, N. N., and Bimberg, D., Physica E 9, 140 (2001).Google Scholar
16. Fujikawa, Y. et al., Phys. Rev. Lett. 88, 176101 (2002).Google Scholar
17. Shchukin, V. A. et al., Phys. Stat. Sol. 224, 503 (2001).Google Scholar