Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T10:02:22.433Z Has data issue: false hasContentIssue false

Gaussian distribution of Schottky barrier heights on SnO2 nanowires

Published online by Cambridge University Press:  29 December 2011

Cleber A. Amorim
Affiliation:
Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo – Brazil.
Olivia M. Berengue
Affiliation:
Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo – Brazil.
Luana Araújo
Affiliation:
Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo – Brazil.
Edson R. Leite
Affiliation:
Laboratório Interdisciplinar de Eletroquímica e Cerâmicas, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo – Brazil.
Adenilson J. Chiquito
Affiliation:
Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo – Brazil.
Get access

Abstract

In this work, we studied metal/SnO2 junctions using transport properties. Parameters such as barrier height, ideality factor and series resistance were estimated at different temperatures. Schottky barrier height showed a small deviation of the theoretical value mainly because the barrier was considered fixed as described by ideal thermionic emission-diffusion model. These deviations have been explained by assuming the presence of barrier height inhomogeneities. Such assumption can also explain the high ideality factor as well as the Schottky barrier height and ideality factor dependence on temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pan, J., Shen, H., and Sanjay, M.. J. of Nanotechnology, Article ID 917320, (2012).Google Scholar
[2] Calestani, D., Zha, M., Mosca, R., Zappettini, A., Carotta, M. C., Di Natale, V. and Zanotti, L., Sensor. and Actuator B: Chem.., 144(2):472478, (2010).Google Scholar
[3] Kim, K., Debnath, P. C., Kim, S. and Lee, S. Y., Appl. Phys. Lett.., 98:113109, (2011).Google Scholar
[4] Lupan, O., Pauporte, T., Viana, B., Tiginyanu, I. M., Ursaki, V. V. and Corte, R., CS Appl. Mater. Interfaces, 2(7), (2010)Google Scholar
[5] Wang, X., Kim, K., Wang, Y., Stadermann, M., Noy, Al., Hamza, A. V., Yang, J., and Sirbuly, D. J., Nano Lett.., 10(12):49014907, (2010).Google Scholar
[6] Wagner, R.S. and Ellis, W.C.. Trans. Metall. Soc. AIME, 233:10531064, (1965).Google Scholar
[7] Soares, A. J., and Perry, R. J., IEEE Sensors Journal, 10(2), (2010).Google Scholar
[8] Cheng, Y., Chen, K. S., Meyer, N. L., Yuan, J., Hirst, L. S., Chase, P. B. and Xiong, P., Biosensors and Biolectronics, 26(11), p. 45384544, (2011).Google Scholar
[9] Lanfredi, A. J. C., Geraldes, R. R., Berengue, O. M., Leite, E. R. and Chiquito, A. J., J. of Appl. Phys. 105, 023708, (2009)Google Scholar
[10] Jang, C. O., Kim, T. H., Lee, S. Y., Kim, D. J., and Lee, S. K.. Nanotechnology, 19, 345203, (2008).Google Scholar
[11] Rhoderick, E. H. and Williams, R. H, Metal-Semiconductor Contacts, 2a Edition (Oxford University Press) New York, (1988).Google Scholar
[12] Lao, C. S., Liu, J., Gao, P., Zhang, L., Davidovic, D., Tummala, R., and Wang, Z. L.. Nano let., 6(2):263266, (2006).Google Scholar
[13] Kim, J. R., Oh, H., So, H. M., Kim, J. J., Kim, J., Lee, C. J., and Lyu, S. C.. Nanotechnology, 13:701, (2002).Google Scholar
[14] Woodruff, S. M., Dellas, N. S., Liu, B. Z., Eichfeld, S. M., Mayer, T. S., Redwing, J. M. and Mohney, S. E., J. Vac. Sci. Technol. B: Mircoelectron and Nanometer Struct., 26:1592, (2008).Google Scholar
[15] Card, H. C. and Rhoderick, E. H.. J. of Phys D: Appl. Phys., 4:1589, (1971).Google Scholar
[16] Shah, J. M., Li, Y. L., Gessmann, T., and Schubert, E. F.. J. of Appl Phys., 94:2627, (2003).Google Scholar
[17] Rideout, V. L. and Crowell, C.R.. Solid-State Electron., 13(7):9931009, (1970).Google Scholar
[18] Werner, J. H. and Guttler, H. H.. J. of Aappl. Phys.., 69(3):15221533, (1991).Google Scholar
[19] Sun, J., Liu, H., Jiang, J., Lu, A., and Wan, Q.. J. of Mat. Chem.., 20(37):80108015, (2010).Google Scholar
[20] Parlaktürk, F., Agasiev, A., Tatarŏglu, A., and Altindal, S.. Gazi University J. of Sci.., 20(4):97102, (2010).Google Scholar
[21] Bohlin, K. E.. J. of App. Phys.., 60(3):12231224, (1986).Google Scholar
[22] Hernandez-Hamirez, F., Tarancon, A., Casals, O., Pellicer, E., Rodriguez, J., Romano-Rodriguez, A., Morante, J. R., Barth, S. and Mathur, S., Phys. Rev. B, 76(085429), (2007).Google Scholar
[23] Altındal, Ş., Karadeniz, S., Toğluoğlu, N. and Tataroğlu, A.. Solid State Electron., 47(10):18471854, (2003).Google Scholar
[24] Zhu, S., Van Meirhaeghe, RL, Detavernier, C., Cardon, F., Ru, G.P., Qu, X.P., and Li, B.Z.. Solid State Electron., 44(4):663671, (2000).Google Scholar