Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T04:23:05.372Z Has data issue: false hasContentIssue false

Gan Growth By Nitrogen Ecr-Cvd Method

Published online by Cambridge University Press:  15 February 2011

K. H. Chen
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan.
C. H. Chao
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan.
T. J. Chuang
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan.
Y. J. Yang
Affiliation:
Department of Electrical Engineering, National Taiwan University, Taiwan.
L. C. Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taiwan.
C. K. Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taiwan.
Y. F. Huang
Affiliation:
Department of Physics, Fu-Jen University, Taiwan.
C. H. Yang
Affiliation:
Department of Physics, Fu-Jen University, Taiwan.
H. Y. Lin
Affiliation:
Tar-Tong Institute of Technology, Taipei, Taiwan
I. M. Chang
Affiliation:
Department of Physics, National Taiwan University, Taiwan.
Y. F. Chen
Affiliation:
Department of Physics, National Taiwan University, Taiwan.
Get access

Abstract

A new approach toward GaN growth using electron cyclotron resonance assisted microwave plasma enhanced chemical vapor deposition (ECR-CVD) method has been implemented. This growth technique allows for low- as well as high-temperature deposition, the use of pure nitrogen source, and a wide operating pressure that is between MOCVD and MOMBE. The unique features of this technique enable the growth of the epitaxial layer of GaN on a variety of substrates including sapphire, silicon, and LiGaO2. SEM, XRD, Raman, photoluminescence (PL), and Hall measurement are employed to characterize the deposited films. Highly oriented, (0001) textured films in the expected wurtzite structure with blue emission have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strite, S. and Morkoc, H., J. Vac. Technol. B10, 1237 (1992).Google Scholar
2. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
3. AsifKhan, M., Krishnankutty, S., Skogman, R.A., Kuznia, J.N., Olson, D.T., and George, T., Appl. Phys. Lett. 65, 520 (1994).Google Scholar
4. Amano, H., Tanaka, T., Kunii, Y., Kim, S.T., and Akasaki, I., Appl. Phys. Lett. 64, 1377 (1994).Google Scholar
5. Morkoc, H, Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., and Bums, M., J. Appl. Phys. 76, 3 (1994).Google Scholar
6. Chow, T.P. and Tyagi, R.. IEEE Trans. Electron. Dev. 41, 1481 (1994).Google Scholar
7. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
8. Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 62, 2390 (1993).Google Scholar
9. Abernathy, C.R., Wisk, P., Ren, F., and Pearton, S.J., J. Vac. Sci. Technol. B 11, 179 (1993).Google Scholar
10. Moustakas, T.D., Molnar, R.J., Lei, T., Menon, G. and Eddy, C.R. Jr., Mat. Res. Soc. Symp. Proc. 242, 427 (1992).Google Scholar
11. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth 98, 209 (1989).Google Scholar
12. Chen, K.H., Lai, Y.L., Lin, J.C., Song, K.J., Chen, L.C., amd Huang, C.Y., Diamond and Related Mater. 4, 460 (1995).Google Scholar
13. Chen, K.H., Lai, Y.L., Chen, L.C., Wu, J.Y., and Kao, F.J., Thin Solid Films 270, 143 (1995).Google Scholar
14. Pavesi, L., Guzzi, M., J. Appl. Phys. 75, 15 (1994).Google Scholar
15. van der Pauw, L.J., Philips Res. Repts 13, 19, (1958).Google Scholar