Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:24:26.551Z Has data issue: false hasContentIssue false

Fundamental Property of the Solid Equation of State Infered from Shock Waves Physics

Published online by Cambridge University Press:  01 February 2011

Francis Chaissé
Affiliation:
CEA/DIF, B.P. 12, 91680 Bruyères-Le-Chatel, FRANCE e-mail: [email protected]
Olivier Heuzé
Affiliation:
CEA/DIF, B.P. 12, 91680 Bruyères-Le-Chatel, FRANCE e-mail: [email protected]
Get access

Abstract

In this study, the linear shock velocity (U) versus particle velocity (u), which is well suited for describing the Hugoniot curve of metals, is revisited from a thermodynamical point of view. In this way, it is possible to set-up a theoretical relation between the Grüneisen coefficient and the isentrope derivatives to third order at the initial state before jump, ensuring the linear U(u) relationship. When applied to the classical Morse potential describing the Equation of State (EoS) in the Mie-Grüneisen form, the theoretical result is in a good acceptance with the shock experimental results carried out on copper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jeanloz, R., Grover, R., Birch-Murnaghan and Us-up Equation of State. Shock Waves in Condensed Matter -pp. 6972 (1987).Google Scholar
2. Jeanloz, R., Shock Wave Equation of State and Finite Strain Theory, J. Geophysical Research, vol. 94, N° B5, pp.58735886 (1989).Google Scholar
3. Berger, J., Joigneau, S.., Au sujet de la relation linéaire existant entre la vitesse matérielle et la vitesse de l'onde de choc se propageant dans un métal., C.R.A.S. tome 249 p. 2506 (1959).Google Scholar
4. Pastine, D.J. and Piacesi, D.., The existence and implications of curvature in the relation between shock and particle velocities for metals., J. Phys. Chem. Solids. vol. 27 p. 17831792 (1966).Google Scholar
5. Romain, J. P.., Thèse de doctorat d'Etat - Poitiers - N° d'ordre 234 (1977).Google Scholar
6. Gasnier, R.., Équation d'état semi-empirique des métaux, Symposium HDP Paris (1967), Dunod - Paris (1968).Google Scholar
7. Chaissé, F., Heuzé, O., Propriété fondamentale de l'équation d'état des solides déduite de la physique des chocs. Revue Scientifique et Technique de la Défense, n° 55, (2002).Google Scholar