Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T08:55:37.642Z Has data issue: false hasContentIssue false

Fully Unstrained GaN on Thick AlN Layers for MEMS Application

Published online by Cambridge University Press:  01 February 2011

Katja Tonisch
Affiliation:
[email protected], Technical University Ilmenau, Nanotechnology, Gustav-Kirchhoff-Str. 7, Ilmenau, D-98693, Germany, +493677693352, +493677693499
Florentina Niebelschuetz
Affiliation:
[email protected], Technical University Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, D-98693, Germany
Volker Cimalla
Affiliation:
[email protected], Technical University Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, D-98693, Germany
Henry Romanus
Affiliation:
[email protected], Technical University Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, D-98693, Germany
Oliver Ambacher
Affiliation:
[email protected], Technical University Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, D-98693, Germany
Get access

Abstract

Usually, the fabrication of microelectromechanical systems (MEMS) requires unstrained or tensile strained active layers on a selectively removable sacrificial layer. Compressive strain would lead to instabilities due to buckling effects. For group III-nitride based MEMS, AlN is a promising material for sacrificial layers since it can be epitaxially overgrown and etched selectively to GaN. However, due to the larger lattice constants GaN is growing compressively strained on AlN. Nanoheteroepitaxy opens a way to yield unstrained, high quality epitaxial GaN layers on nanocrystalline AlN thin film by means of a 3D strain relaxation mechanism. For this purpose sputtered nanocrystalline AlN films were overgrown with single crystalline GaN and AlGaN/GaN layers by metalorganic chemical vapor deposition. The high quality of the layers is proven by an atomically flat surface and a 2D electron gas at the interface of the AlGaN/GaN heterostructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ambacher, O., J. Phys. D: Appl. Phys. 31 (1998) 2653.Google Scholar
2. Yang, B. and Fay, P., J. Vac. Sci. Technol. B 24 (2006) 1337.Google Scholar
3. Cimalla, I., Förster, Ch., Cimalla, V., Lebedev, V., Cengher, D., and Ambacher, O., phys. stat. sol. (c) 3 (2006) 1767.Google Scholar
4. Cimalla, V., Förster, Ch., Will, F., Tonisch, K., Brueckner, K., Stephan, R., Hein, M.E., Ambacher, O., and Aperathitis, E., Appl. Phys. Lett. 88 (2006) 253501.Google Scholar
5. Verbridge, S.S., Parpia, J.M., Reichenbach, R.B., Bellan, L.M., and Craighead, H.G., J. Appl. Phys. 99 (2006) 124304.Google Scholar
6. Ikehara, T., Zwijze, R.A.F. and Ikeda, K., J. Microm. Microeng. 11 (2001) 55.Google Scholar
7. Zubia, D. and Hersee, S.D., J. Appl. Phys. 85 (1999) 6492.Google Scholar
8. Zang, K., Wang, Y.D., Chua, S.J., Appl. Phys. Lett. 87 (2005) 193106.Google Scholar
9. Zubia, D., Zaidi, S.H., Hersee, S.D. and Brueck, S.R.J., J. Vac. Sci. Technol. B 18 (2000) 3514.Google Scholar
10. Luryi, S., Suhir, E., Appl. Phys. Lett. 49 (1986) 140.Google Scholar
11. Jeganathan, K., Shimizu, M. and Okumura, H., Appl. Phys. Lett. 86 (2005) 19 1908.Google Scholar