Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:59:13.975Z Has data issue: false hasContentIssue false

Ftir Investigations of Plasma Modified Polymer Surfaces and Their Interfaces with Plasma Deposited Tungsten

Published online by Cambridge University Press:  21 February 2011

Jihperng Leu
Affiliation:
Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455
Manoj Dalvie
Affiliation:
Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455
Klavs F. Jensen
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Surface modifications of thin polyimide films (100–2000 A˚) in downstream microwave CF4/NF3/Ar plasmas and radio-frequency (RF) CF4 plasmas have been studied in situ by Fourier transform infrared (FTIR) reflection-absorption spectroscopy. The downstream microwave plasma treatment produced significant surface fluorination in terms of polyfluorinated alkyl and aryl compounds as well as acyl and benzoyl fluorides. The depth of fluorination was approximately 500 Å. Similar changes in polymer surface functionalities were observed for RF plasma surface modifications, but the depth of fluorination was reduced to 30Å because of ion-bombardment. The interface between the tungsten film and polyimide surfaces has been characterized by ex situ FTIR reflection-absorption technique through the silicon side of Si/polymer/W structures. The observed spectral changes relative to polyimide-gold interfaces were interpreted in terms of interactions of tungsten with functionalities of the polyimde backbone. Tungsten deposited by both sputtering and plasma enhanced chemical vapor deposition (PECVD) showed significant chemical interactions, strongest for PECVD tungsten.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, Y. K. and Craig, J. D., Chapter 9, in Polymer Materials for Electronic Applications, Am. Chem. Soc. Symp. Ser. 184, 107 (1982).Google Scholar
2. Jensen, R. J., Cummings, J. P., and Vora, H., IEEE Transactions on Components, Hybrids, and Manufac. Technol. CHMT–7, 384 (1984).Google Scholar
3. Chou, N. J., Parazsczak, J., Babich, E., Chaug, Y. S., and Goldblatt, R., Microelectronic Engineering 5, 375 (1986).Google Scholar
4. Egitto, F. D., Emmi, F., Horwath, R. S., and Vukanovic, V., J. Vac. Sci. Technol. B 3, 893 (1985).Google Scholar
5. Vukanovic, V., Takacs, G. A., Matuszak, E. A., Egitto, F. D., Emmi, F., and Horwath, R. S., J. Vac. Sci. Technol. B6, 66 (1988).Google Scholar
6. Meyer, H. M. III, Anderson, S. G., Atanasoska, L. J., and Weaver, J. H., J. Vac. Sci. Technol., A 6, 30 (1988).Google Scholar
7. Tromp, R. M., LeGoues, F., and Ho, P. S., J. Vac. Sci. Technol., A3, 782 (1985).Google Scholar
8. Stewart, W. C., Leu, J., and Jensen, K. F., Mat. Res. Soc. Symp. Proc. 153, 285 (1989).Google Scholar
9. Hahn, P. O., Rubloff, G. W., Bartha, J. W., Legoues, F. K., Tromp, R., and Ho, P. S., Mater. Res. Soc. Symp. Proc. 40, 251 (1985).Google Scholar
10. Chou, N. J. and Tang, C. H., J. Vac. Sci. Technol. A2, 751 (1984).Google Scholar
11. Green, M.L. and Levy, R.A., J. of Electrochem. Soc. 132,1243 (1985).Google Scholar
12. Pattee, R. W., McConica, C. M., and Baughman, K., J. Electrochem. Soc. 135, 1477 (1988).Google Scholar
13. Greene, W. M., Hess, D. W., and Oldham, W. G., Appl. Phys. Lett. 64, 4696 (1988).Google Scholar
14. Leu, J. and Jensen, K. F., Mater. Res. Soc. Symp. Proc. 154, 253 (1989).Google Scholar
15. Dalvie, M. and Jensen, K. F., J. Electrochem. Soc. (to appear April 1990).Google Scholar
16. Baghdadi, A., Appl. Spectrosc. 37, 520 (1983).Google Scholar
17. Yadav, R. A., Ram, S., Shanker, R., and Singh, S., Spectrochim. Acta 43A, 901 (1987).Google Scholar
18. Varsanyi, G., Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, John Wiley & Sons, New York (1974).Google Scholar
19. Kogoma, M., and Turban, G., Plasma Chem. Plasma Process. 6, 349 (1986).Google Scholar
20. Anand, M., Cohen, R. E., Baddour, R. F., Am. Chem. Soc. Symp. Ser. 162, 353 (1981).Google Scholar
21. Blanke, J. F., Vincent, S. E., and Overend, J., Spectrochim. Acta 32A, 163 (1976).Google Scholar
22. Pireaux, J. J., Vermeersch, M., Gregoire, C., Thiry, P. A., and Candano, R., and Clarke, T. C., J. Chem. Phys. 88, 3353 (1988).Google Scholar
23. Silverman, B. D., Macromolecules, in pressGoogle Scholar
24. Ishida, H., Wellinghoff, S., Baer, E., and Koenig, J. L., Macromolecules 13, 826 (1980).Google Scholar
25. Dunn, D. S. and Grant, J. L., J. Vac. Sci. Technol. A 7, 253 (1989).Google Scholar
26. Nandi, M. and Sen, A., Chemistry of Materials 1, 291 (1989).Google Scholar