Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T08:18:13.512Z Has data issue: false hasContentIssue false

From Dislocation Cores to high Temperature Strain rate Effects in L12 Compounds

Published online by Cambridge University Press:  26 February 2011

V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania,, Philadelphia,, PA 19104,, U.S.A.
Y. Sodani
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania,, Philadelphia,, PA 19104,, U.S.A.
J. Cserti
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania,, Philadelphia,, PA 19104,, U.S.A.
Get access

Abstract

It is now generally accepted that in many L12 compounds the yielding behavior is controlled by the special features of the cores of screw dislocations. In this paper we first summarize results of the atomistic studies of the core structures of the <110> screw dislocations in these compounds. At this point we show that, depending on the atomic bonding, two distinct classes of L12 alloys exist. In the first, represented by alloys like Ni3Al, a glissile configuration of the core exists on {111} planes although a sessile configuration is energetically more favored. In the second class, represented by alloys like Pt3A1 and A13Ti modified by alloying into L12 structure, the cores of screw dislocations are always sessile. Using the results of the atomistic studies we present physical models explaining the temperature dependences of the yield stress in both classes of L12 alloys. At this point we also present a further development of the model for the anomalous temperature dependence of the yield stress in alloys like Ni3A1, originally put forward by Paidar et al. [15]. In this development strain rate effects are included and it is shown that the model explains not only the orientation dependences of the yield stress in the anomalous regime but also the very low strain rate sensitivity observed in this regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peierls, R., Proc. Phys. Soc. 52, 34 (1940).CrossRefGoogle Scholar
2. Nabarro, F. R. N., Proc. Phys. Soc. 59, 236 (1947).CrossRefGoogle Scholar
3. Vitek, V., in Dislocations and Properties of Real Materials, edited by Loretto, M. H. (The Institute of Metals, London, 1985), p. 30.Google Scholar
4. Christian, J. W., Metall Trans. A 14, 1237 (1983).CrossRefGoogle Scholar
5. Naka, S., Lasalmonie, A., Costa, P. and Kubin, L. P., Phil. Mag. A, 57, 717 (1988).CrossRefGoogle Scholar
6. Pope, D. P. and Ezz, S. S., Int. Metals Rev. 29, 136 (1984).Google Scholar
7. DiPersio, J. and Escaig, B., Phys. Stat. Sol. (a) 40, 393 (1977).CrossRefGoogle Scholar
8. Crampon, J., Farvacque, J. L., Doukhan, J. C. and Escaig, B., Phys. Stat. Sol. (a) 24, 167 (1974).Google Scholar
9. Poirier, J.-P. and Vergobbi, B., Physics of the Earth and Planetary Interiors 16, 370 (1978).Google Scholar
10. Veyssiere, P., Rev. Phys. Appl. Paris 23, 673 (1988).Google Scholar
11. Duesbery, M. S., in Dislocations in Solids, edited by Nabarro, F. R. N. (Elsevier Science Publ., Amsterdam, 1989), p. 67.Google Scholar
12. Dimiduk, D. M., Rev. Phys. Appl. Paris, to be published (1991).Google Scholar
13. Kear, B. H. and Wilsdorf, H. G. F., Trans. TMS-AIME 224, 382 (1962).Google Scholar
14. Takeuchi, S. and Kuramoto, E., Acta metall. 21, 415 (1973).Google Scholar
15. Paidar, V., Pope, D. P. and Vitek, V., Acta metall. 32, 435 (1984).CrossRefGoogle Scholar
16. Ezz, S. S., Pope, D. P. and Paidar, V., Acta metall. 30, 921 (1982).Google Scholar
17. Umakoshi, Y., Pope, D. P. and Vitek, V., Acta metall. 32, 449 (1984).Google Scholar
18. Suzuki, T., Mishima, Y. and Miura, S., ISIJ International Tokyo 29, 1 (1989).Google Scholar
19. Heredia, F. H., Doctoral Thesis, University of Pennsylvania (1990).Google Scholar
20. Heredia, F. H. and Pope, D. P., Acta metall mater., to be published (1991).Google Scholar
21. Leverant, C. R., Gell, M. and Hopkins, S. W., Mater. Sci. Eng. 8, 125 (1971).CrossRefGoogle Scholar
22. Miura, S., Ochiai, S., Oya, Y., Mishima, Y. and Suzuki, T., High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C. (Mat. Res. Soc. Symp., Vol. 133, 1989), p. 341.Google Scholar
23. Bonneville, J. and Martin, J. L., High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L., Stiegler, J. O. and Pope, D.P., (Mat. Res. Soc. Symp., this Volume, 1991).Google Scholar
24. Stoiber, J., Bonneville, J. and Martin, J. L., Strength of Metals and Alloys - ICSMA 8, edited by Kettunen, P. O., Lepistö, T. K. and Lehtonen, M. E. (Pergamon: Oxford Vol. 1, 1988), p. 457.Google Scholar
25. Baluc, N., Stoiber, J., Bonneville, J. and Martin, J. L., Israel J. Technology 24, 269 (1988).Google Scholar
26. Guiu, F. and Pratt, P. L., Phys. stat. sol. 34, 9 (1969).Google Scholar
27. Davies, R. G. and Stoloff, N. S., Phil. Mag. 12, 297 (1965).Google Scholar
28. Dowling, W. E. and Gibala, R., High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C. (Mat. Res. Soc. Symp., Vol. 133, 1989), p. 209.Google Scholar
29. Milligan, W. W. and Antolovich, S. D., Metall. Trans. A 20, 2811 (1989).Google Scholar
30. Wee, D. M., Noguchi, O., Oya, Y. and Suzuki, T., Trans. Japan Inst. Metals 21, 237 (1980).Google Scholar
31. Yadogawa, M., Wee, D. M., Oya, Y. and Suzuki, T., Scripta Metall. 14, 849 (1980).Google Scholar
32. Wee, D. M., Pope, D. P. and Vitek, V., Acta Metall. 32, 829 (1984).Google Scholar
33. Kumar, K.S. and Pickens, J.R., Dispersion Strengthened Aluminum Alloys, edited by Y.-W. Kim and W.M. Griffith (Warrendale: TMS, 1988), p. 763;Google Scholar
33a Scripta Metall. 22, 1015 (1988).Google Scholar
34. Winnicka, M. B. and Varin, R. A., Scripta Metall. 23, 1199 (1989).CrossRefGoogle Scholar
35. Wu, Z. L., Pope, D. P., and Vitek, V., Scripta Metall. 24, 2187 and 2191 (1990).Google Scholar
36. Inui, H., Luzzi, D.E., Pope, D.P., Vitek, V. and Yamaguchi, M., Phil. Mag. to be published (1991).Google Scholar
37. Finnis, M. W. and Sinclair, J. E., Phil.Mag. A 50, 45 (1984).Google Scholar
38. Ackland, G. J. and Vitek, V., Phys. Rev. B, 41, 10324 (1990).Google Scholar
39. Vitek, V., Ackland, G. J. and Cserti, J., Alloy Phase Stability and Design, edited by Stocks, G. M., Giamei, A. P. and Pope, D. P. (Mat. Res. Soc. Symp., Vol. 186, 1990).Google Scholar
40. Yamaguchi, M., Pope, D. P., Vitek, V. and Umakoshi., Y. Phil. Mag. A 43, 1265 (1981).Google Scholar
41. Vitek, V., Crystal Lattice Defects 5, 1, (1976).Google Scholar
42. Yamaguchi, M., Paidar, V., Vitek, V. and Pope, D. P., Phil. Mag. A 45, 867 (1982).Google Scholar
43. Farkas, D. and Savino, E. J., Scripta Metall. 22, 557 (1988).Google Scholar
44. Yoo, M. H., Daw, M. S. and Baskes, M. I., in Atomistic Simulation of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D. J. (Plenum Press, New York, 1989), p.401.Google Scholar
45. Tichy, G., Vitek, V. and Pope, D. P., Phil. Mag. A 53, 467 (1986).Google Scholar
46. Escaig, B., J. Phys. Paris 29, 225 (1968).Google Scholar
47. Tichy, G., Vitek, V. and Pope, D. P., Phil. Mag. A 53, 485 (1986).Google Scholar
48. Duesbery, M. S., Phil. Mag. 19, 501 (1969).Google Scholar
49. Heredia, F. E., Tichy, G., Pope, D. P. and Vitek, V., Acta Metall. 37, 2755 (1989).Google Scholar
50. Kubin, L. P., Chihab, K. and Estrin, Y., Acta Metall. 36, 2707 (1988).Google Scholar
51. Kubin, L. P. and Estrin, Y., Rev. Phys. Appl. Paris, to be published (1991).Google Scholar