Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T04:19:30.079Z Has data issue: false hasContentIssue false

Friction and the Continuum Limit – Where is the Boundary?

Published online by Cambridge University Press:  21 March 2011

Yingxi Zhu
Affiliation:
Department of Materials Science and EngineeringUniversity of Illinois, Urbana, IL 61801, USA
Steve Granick
Affiliation:
Department of Materials Science and EngineeringUniversity of Illinois, Urbana, IL 61801, USA
Get access

Abstract

The no-slip boundary condition, believed to describe macroscopic flow of low-viscosity fluids, overestimates hydrodynamic forces starting at lengths corresponding to hundreds of molecular dimensions when water or tetradecane is placed between smooth nonwetting surfaces whose spacing varies dynamically. When hydrodynamic pressures exceed 0.1-1 atmospheres (this occurs at spacings that depend on the rate of spacing change), flow becomes easier than expected. Therefore solid-liquid surface interactions influence not just molecularly-thin confined liquids but also flow at larger length scales. This points the way to strategies for energy-saving during fluid transport and may be relevant to filtration, colloidal dynamics, and microfluidic devices, and shows a hitherto-unappreciated dependence of slip on velocity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Klumer, Netherlands (1983).Google Scholar
2. Kim, S. and Karrila, S., Microhydrodynamics, Butterworth-Heinemann, Newton, MA (1991).Google Scholar
3.For a historical review, see Goldstein, S., Modern Developments in Fluid Dynamics, Oxford, Clarendon Press (1938), Vol. II, p. 677680.Google Scholar
4. Knudstrup, T. G., Bitsanis, I. A., Westermann-Clark, G. B., Langmuir 11, 893 (1995).Google Scholar
5. Léger, L. and Raphaël, E., Adv. Polym. Sci. 138, 185 (1999).Google Scholar
6. Noever, D. A., J. Colloid Interface Sci. 147, 186 (1991).Google Scholar
7. Tholen, S. M. and Parpia, J. M., Phys. Rev. Lett. 67, 334 (1991).Google Scholar
8. Huh, C. and Scriven, L. E., J. Colloid Interface Sci. 35, 85 (1971).Google Scholar
9. Bhushan, B., Israelachvili, J. N., and Landman, U., Nature 374, 607 (1995).Google Scholar
10. Vinogradova, O. I., Langmuir 11, 2213 (1995).Google Scholar
11. Vinogradova, O. I., Int. J. Miner. Process. 56, 31 (1999).Google Scholar
12. Pit, R., Hervet, H., and Léger, L., Phys. Rev. Lett. 85, 980 (2000).Google Scholar
13. Campbell, S. E., Luengo, G., Srdanov, V. I., Wudl, F., and Israelachvili, J. N., Nature 382, 520 (1996).Google Scholar
14. Barrat, J.-L. and Bocquet, L., Phys. Rev. Lett. 82, 4671 (1999).Google Scholar
15. Ruckenstein, E. and Rajora, P., J. Colloid Interface Sci. 96, 488 (1983).Google Scholar
16. Dhinojwala, A. and Granick, S., Macromolecules 30, 1079 (1997).Google Scholar
17. Peanasky, J. S., Schneider, H. M., Granick, S., and Kessel, C. R., Langmuir 11, 953 (1995).Google Scholar
18. Israelachvili, J. N., J. Colloid Interface Sci. 110, 263 (1986).Google Scholar
19. Chan, D. Y. C. and Horn, R. G., J. Chem. Phys. 83, 5311 (1985).Google Scholar
20. Georges, J. M., Millot, S., Loubet, J. L., and Tonck, A., J. Chem. Phys. 98, 7345 (1993).Google Scholar
21. Lum, K., Chandler, D., and Weeks, J. D., J. Phys. Chem. B 103, 4570 (1999).Google Scholar
22. Richardson, S., J. Fluid Mech. 59, 707 (1973).Google Scholar
23. Einzel, D., Panzer, P., and Liu, M., Phys. Rev. Lett. 64, 2269 (1990).Google Scholar