Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T04:52:14.668Z Has data issue: false hasContentIssue false

Fracture behavior of heat treated liquid crystalline polymers

Published online by Cambridge University Press:  05 March 2013

A. Reyes-Mayer
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
B Alvarado-Tenorio
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
A Romo-Uribe*
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
O Flores
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
B Campillo
Affiliation:
Laboratorio de Nanopolimeros y Coloides, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mor. 62210, MEXICO.
M Jaffe
Affiliation:
New Jersey Institute of Technology, Newark NJ, U.S.A.
*
*To whom correspondence should be addressed: [email protected]
Get access

Abstract

Thermotropic polymers are thermally treated in air at temperatures Ta, where ΔT =Ta- Ts→n=40°C, and Ts→n is the solid-to-nematic transition. Samples are extruded thin films of a series of thermotropic random copolyesters termed B-N, COTBP and RD1000. The thermal treatment produces a second endotherm without changing Ts→n for B-N and RD1000. However, for COTBP Ts→n is significantly increased. Regardless of the complex thermal behavior exhibited by the thermotropes, the thermal treatment produces a significant increase in Young's modulus, more than 30% for B-N and over 100% for COTBP. The increase in mechanical modulus is correlated with a thermally-induced fiber-like morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sawyer, L.C., Linstid, H.C. and Romer, M., Plastics Engineering 54, 37 (1998).Google Scholar
Donald, A.M. and Windle, A.H., Liquid Crystalline Polymers, 2 nd ed. (Cambridge: Cambridge University Press, 1992).Google Scholar
Cakmak, M., Teitge, A., Zachmann, H.G. and White, J.L., J. Polym. Sci. Poly. Phys. 31, 371 (1993).CrossRefGoogle Scholar
Romo-Uribe, A., Proc. R. Soc. Lond. A457, 207 (2001).CrossRefGoogle Scholar
Collins, T.L.D., Davies, G.R. and Ward, I.M., Polym. Adv. Tech. 12, 544 (2001).CrossRefGoogle Scholar
Romo-Uribe, A., Alvarado-Tenorio, B., Romero-Guzman, M.E., Rejon, L. and Saldivar-Guerrero, R., Polym. Adv. Techn. 20, 759 (2009).CrossRefGoogle Scholar
Salahshoor-Kordestani, S., Hanna, S. and Windle, A.H.. Polymer. 41, 6619 (2000).CrossRefGoogle Scholar
Reyes-Mayer, A., Constant, A., Romo-Uribe, A. and Jaffe, M.. Mater. Res. Soc. Symp. Proc. 1373 DOI: 10.1557/opl.2012.317 (2012).Google Scholar
Romo-Uribe, A., Alvarado-Tenorio, B. and Romero-Guzmán, M.E., Rev. LatinAm. Metal. Mat. 30, 190 (2010).Google Scholar
Blackwell, J., Gutierrez, G.A. and Chivers, R.A., Macromolecules. 17, 1219 (1984).CrossRefGoogle Scholar
Romo-Uribe, A., Lemmon, T.J. and Windle, A.H., J. Rheol. 41, 1117 (1997).CrossRefGoogle Scholar
Chung, T.S., Cheng, M., Goh, S.H., Jaffe, M. and Calundann, G.W., J. Appl. Polym. Sci. 72, 1139 (1999).3.0.CO;2-O>CrossRefGoogle Scholar
Chung, T.S., Cheng, M., Pallathadka, P.K. and Goh, S.H., Polym. Eng. Sci. 39, 953 (1999).CrossRefGoogle Scholar