Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T14:43:13.976Z Has data issue: false hasContentIssue false

Formation Of Single-Wall Carbon Nanotubes Forrest Assemblies On Metal Surfaces

Published online by Cambridge University Press:  11 February 2011

Debjit Chattopadhyay
Affiliation:
Nanomaterials Optoelectronics Laboratory, Department of Chemistry, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269–3136.
Izabela Galeska
Affiliation:
Nanomaterials Optoelectronics Laboratory, Department of Chemistry, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269–3136.
Fotios Papadimitrakopoulos*
Affiliation:
Nanomaterials Optoelectronics Laboratory, Department of Chemistry, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269–3136.
*
* Tel. (860)-486–3447, Fax: (860)–486–4745, Email: [email protected].
Get access

Abstract

Learning how to purify and manipulate single wall carbon nanotubes (SWNTs) presents a unique challenge in material science. The processing-related difficulties of these long nano-fibers stem from their high aspect ratio, rigidity and the profound hydrophobic attractions along their tubular walls. Shortening them into discrete segments, with lengths from tens to hundreds of nanometers, presents a viable methodology to alleviate the shape-induced intractability. In addition, the metal-assisted self-organization of these nanosized objects into nano-forest geometries with dense perpendicular surface grafting, demonstrates that such nanosized objects hold significant promise for the development of nanoscale devices. This paper will present an extensive characterization of the topological characteristics of these assemblies, along with their surface coverage, growth characteristics and height fluctuation on iron hydroxide substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

CITED REFERENCES

(1) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622625.CrossRefGoogle Scholar
(2) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 18011804.CrossRefGoogle Scholar
(3) Kong, J.; Chapline, M. G.; Dai, H. Adv. Mater. 2001, 13, 13841386.Google Scholar
(4) Rinzler, A. G.; Hafner, J. H.; Nikolaev, P.; Lou, L.; Kim, S. G.; Tomanek, D.; Nordlander, P.; Colbert, D. T.; Smalley, R. E. Science 1995, 269, 15501553.CrossRefGoogle Scholar
(5) Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Science 1999, 283, 512514.CrossRefGoogle Scholar
(6) Curran, S. A.; Ajayan, P. M.; Blau, W. J.; Carroll, D. A.; Coleman, J. N.; Dalton, A. B.; Davey, P. A.; Drury, A.; Mc Carthy, B.; Maier, S.; Strevens, A. Adv. Mater. 1998, 10, 10911093.3.0.CO;2-L>CrossRefGoogle Scholar
(7) Woo, H. S.; Czerw, R.; Webster, S.; Carroll, D. L.; Park, J. W.; Lee, J. H. Synth. Met. 2001, 116, 369372.CrossRefGoogle Scholar
(8) Fournet, P.; Coleman, J. N.; Lahr, B.; Drury, A.; Blau, W. J.; O'Brien, D. F.; Horhold, H. H. J. App. Phys. 2001, 90, 969975.Google Scholar
(9) Wei, B. Q.; Vajtai, R.; Jung, Y.; Ward, J.; Zhang, R.; Ramanath, G.; Ajayan, P. M. Nature 2002, 416, 495496.CrossRefGoogle Scholar
(10) de Heer, W. A.; Bacsa, W. S.; Chatelain, A.; Gerfin, T.; Humphrey-Baker, R.; Forro, L.; Ugarte, D. Science 1995, 268, 845847.CrossRefGoogle Scholar
(11) Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F. J.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 12531256.CrossRefGoogle Scholar
(12) Liu, Z.; Shen, Z.; Zhu, T.; Hou, S.; Ying, L.; Shi, Z.; Gu, Z. Langmuir 2000, 16, 35693573.Google Scholar
(13) Liu, J.; Casavant, M. J.; Cox, M.; Walters, D. A.; Boul, P.; Lu, W.; Rimberg, A. J.; Smith, K. A.; Colbert, D. T.; Smalley, R. E. Chem. Phys. Lett. 1999, 303, 125129.CrossRefGoogle Scholar
(14) Burghard, M.; Duesberg, G.; Philipp, G.; Muster, J.; Roth, S. Adv. Mater. 1998, 10, 584588.3.0.CO;2-9>CrossRefGoogle Scholar
(15) Choi, K. H.; Bourgoin, J. P.; Auvray, S.; Esteve, D.; Duesberg, G. S.; Roth, S.; Burghard, M. Surface Science 2000, 462, 195202.Google Scholar
(16) Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. J. Am. Chem. Soc. 2001, 123, 9451.CrossRefGoogle Scholar
(17) Tomoaki, N.; Takashi, I.; Yoshio, U. Anal. Chem. 2002, 74, 42754278.Google Scholar
(18) Cai, L.; Bahr, J. L.; Yao, Y.; Tour, J. M. Chem. Mater. 2002, 14, 42354241.CrossRefGoogle Scholar
(19) Diao, P.; Liu, Z.; Wu, B.; Nan, X.; Zhang, J.; Wei, Z. ChemPhysChem 2002, 3, 898901.3.0.CO;2-U>CrossRefGoogle Scholar
(20) Campbell, J. K.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1999, 121, 37793780.Google Scholar
(21) Britto, P. J.; Santhanam, K. S. V.; Ajayan, P. M. Bioelectrochemistry and Bioenergetics 1996, 41, 121125.Google Scholar
(22) Davis, J. J.; Coles, R. J.; Hill, H. A. O. J. Electroanal. Chem. 1997, 440, 279282.Google Scholar
(23) Muster, J.; Burghard, M.; Roth, S.; Duesberg, G. S.; Hernandez, E.; Rubio, A. J. Vac. Sci. Technol., B 1998, 16, 27962801.CrossRefGoogle Scholar
(24) Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C. Chem. Phys. Lett. 2001, 345, 2528.Google Scholar
(25) Hamon, M. A.; Hu, H.; Bhowmik, P.; Niyogi, S.; Zhao, B.; Itkis, M. E.; Haddon, R. C. Chem. Phys. Lett. 2001, 347, 812.CrossRefGoogle Scholar
(26) O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342, 265.CrossRefGoogle Scholar
(27) Hwang, J.; Gommans, H. H.; Ugawa, A.; Tashiro, H.; Haggenmueller, R.; Winey, K. I.; Fischer, J. E.; Tanner, D. B.; Rinzler, A. G. Physical Review B 2000, 62, R13310–R13313.CrossRefGoogle Scholar
(28) Rinzler, A. G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C. B.; Rodriguez-Macias, F. J.; Boul, P. J.; Lu, A. H.; Heymann, D.; Colbert, D. T.; Lee, R. S.; Fischer, J. E.; Rao, A. M.; Eklund, P. C.; Smalley, R. E. Appl. Phys. A. 1998, A67, 29.CrossRefGoogle Scholar
(29) Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature 1998, 394, 5255.Google Scholar