Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:58:16.141Z Has data issue: false hasContentIssue false

Formation, Mechanical and Electrical Properties of Ni-based Amorphous alloys and their Nanocrystalline Structure

Published online by Cambridge University Press:  11 February 2011

Xiangcheng Sun
Affiliation:
Center for Materials for Information Technology, The University of Alabama, uscaloosa, Alabama, 35487–0209
Tiemin Zhao
Affiliation:
Lab of RSA, Institute of Metal Research, CAS, Shenyang, P. R. China
Get access

Abstract

A Ni-based amorphous alloy in Ni60Ti20Zr20 system was prepared by melting spinning. The glass transition temperature (Tg) was as high as about 760 K, the supercooled liquid region was quite wide, ΔTx = 50 K (ΔTx= Tx-Tg, Tx crystallization temperature), and the reduced glass transition temperature (Tg/Tm) was 0.60. The amorphous alloys exhibited a high tensile strength (of= 1015 MPa) at room temperature. The electrical conductivity obeyed a T12 law over the range of 15 K< T < 300 K, which can be explained by an electron-electron interaction model. After annealing the amorphous alloy into primary crystallization, a nanocomposites consisted of metastable Ti2Ni and Zr2Ni nanophases with size less than 15 nm embedded in the amorphous matrix was appeared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).Google Scholar
2. Wang, K. Y., Shen, T. D., Jiang, H. G., Quan, M. X. and Wei, W. D., Mater. Sci. Eng. A179/A180, 215 (1994).Google Scholar
3. Lee, P. Y. and Koch, C. C., J. Mater. Sci. 23, 2837 (1988).Google Scholar
4. Amiya, K., Nishiyama, N., Inoue, A. and Masumoto, T., Mater. Sci. Eng. A179/A180, 692 (1994).Google Scholar
5. Molokanov, V. V., Chebotnikov, V. N., J. Non-Crystalline Solids 117/118, 789 (1990).Google Scholar
6. Waseda, Y., Ueno, S., Hagiwara, M. and Aust, K.T., Prog. Mater. Sci. 34, 149 (1990).Google Scholar
7. Luborsky, F. E., Mater. Sci. Eng. 28, 139 (1977).Google Scholar
8. Saida, J., Matsushita, M., Li, C. and Inoue, A., Appl. Phys. Lett. 76, 3558 (2000).Google Scholar
9. Murty, B. S., Ping, D. H., Hono, K. and Inoue, A., Appl. Phys. Lett. 76, 55 (2000).Google Scholar
10. Chen, M. W., Zhang, T., Inoue, A., Sakai, A. and Sakurai, T., Appl. Phys. Lett. 75, 1382 (1999).Google Scholar
11. Turnbull, D., Contempt. Phys. 10, 473 (1969).Google Scholar
12. Inoue, A., Acta Mater. 58, 279 (2000).Google Scholar
13. Lal, K., Meikap, A. K., Chattopadhyay, S. K., Chatterjee, S. K., Ghosh, M., Barman, A. and Chatterjee, S., Solid State Commun. 113, 533 (2000).Google Scholar
14. Meikap, A. K., Das, A., Chatterjee, S., Digar, M. and Bhattacharyya, S. N., Phys. Rev. B47, 1340 (1993).Google Scholar
15. Fan, C., Li, C. F. and Inoue, A., J. Non-Crystalline Solids 270, 28 (2000).Google Scholar
16. Wang, J. G., Wang, B. W., Choi, B. W., Niegh, T. G. and Liu, C. T., J. Mater. Res. 15, 798 (2000).Google Scholar