Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T11:31:28.316Z Has data issue: false hasContentIssue false

Formation and Molecular Sensing Property of Silver Nanoparticles from Sputtered Silver Oxide Layers

Published online by Cambridge University Press:  15 February 2011

Makoto Fujimaki
Affiliation:
Center for Applied Near-Field Optics Research (CAN-FOR) National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Yasuhiko Iwanabe
Affiliation:
Graduate School of Engineering, Tokyo Denki University 2-2 Kanda, Chiyoda, Tokyo, 101-8457, Japan
Koichi Awazu
Affiliation:
Center for Applied Near-Field Optics Research (CAN-FOR) National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Junji Tominaga
Affiliation:
Center for Applied Near-Field Optics Research (CAN-FOR) National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Get access

Abstract

Surface-enhanced Raman scattering (SERS) efficiency of silver nanoparticles formed by laser irradiation or thermal annealing in sputtered silver oxide layers was examined. Silver nanoparticles formed by irradiation of He-Ne laser light (632.8 nm) to a sputtered silver oxide thin film thermally annealed at 300°C show good SERS, while silver nanoparticles formed by thermal annealing at 600°C scarcely show SERS. From these results, it is deduced that thermal annealing at a proper temperature results in formation of silver nuclei that can be precursors of silver nanoparticles with desirable sizes to induce the SERS, while thermal annealing at a higher temperature results in the formation of large silver particles that no longer cause the SERS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fleischman, M., Hendra, P. J. and McQuillan, A. J., Chem. Phys. Lett. 26, 123 (1974).Google Scholar
2. Jeanmaire, D. L. and Duyne, R. P. V., J. Electroanal. Chem. 84, 1 (1977).Google Scholar
3. Albrecht, M. G. and Creighton, J. A., J. Am. Chem. Soc. 99, 5215 (1977).Google Scholar
4. Seki, H. J., J. Electron Spectrosc. Relat. Phenom. 39, 239 (1986).Google Scholar
5. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T. Itzkan, I., Dasari, R. R. and Feld, M. S., Phys. Rev. Lett. 78, 1667 (1997).Google Scholar
6. Kneipp, K., Wang, Y., Kneipp, H., Itzkan, I., Dasari, R. R. and Feld, M. S., Phys. Rev. Lett. 76, 2444 (1996).Google Scholar
7. Krug, J. T. II , Wang, G. D., Emory, S. R. and Nie, S., J. Am. Chem. Soc. 121, 9208 (1999).Google Scholar
8. Murphy, C. J. and Jana, N. R., Adv. Mater. 14, 80 (2002).Google Scholar
9. Barbic, M., Mock, J. J., Smith, D. R. and Schultz, S., J. Appl. Phys. 91, 9341 (2002).Google Scholar
10. Li, Y. S., Cheng, J. and Wang, Y., Spectrochim. Acta Part A. 56, 2067 (2000).Google Scholar
11. Shalaev, V. M. (Ed.), Optical Properties of Nanostructured Random Media, Topics Appl. Phys. 82, 215 (2002) © Springer-Verlag Berlin Heidelberg.Google Scholar
12. Büchel, D., Mihalcea, C., Fukaya, T., Atoda, N. and Tominaga, J., Appl. Phys. Lett. 79, 620 (2001).Google Scholar
13. Mihalcea, C., Büchel, D., Atoda, N. and Tominaga, J., J. Am. Chem. Soc. 123, 7172 (2001).Google Scholar
14. Shima, T. and Tominaga, J, J. Vac. Sci. Technol. A 21, 634 (2003).Google Scholar