Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:13:50.348Z Has data issue: false hasContentIssue false

Fluorites: Superionics and Conduction Processes

Published online by Cambridge University Press:  01 February 2011

Stephen Hull*
Affiliation:
[email protected], United States
Get access

Abstract

The superionic conducting properties of fluorite structured compounds are discussed in this paper, starting with a brief historical overview of the topic. The current state of knowledge concerning the dynamic lattice disorder associated with the high values of ionic conductivity is summarized and illustrated using three examples taken from the author’s research program. These are chosen to highlight different aspects of the structure-property relationships within fluorite-structured superionics and, in particular, demonstrate the role of the neutron diffraction technique in investigations of compounds showing high levels of ionic conductivity. The paper concludes with an overview of some current developments within this research field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Faraday, M., Phil. Trans. R. Soc., 90 (1838).Google Scholar
[2] Benz, R., Z. Phys. Chem., 95, 2532 (1975).Google Scholar
[3] Catlow, C.R.A. and Norgett, M.J., J. Phys. C: Solid State Phys., 6, 13251339 (1973).Google Scholar
[4] Boyce, J.B. and Huberman, B.A., Phys. Rep., 51, 189265 (1979).Google Scholar
[5] Schröter, W. and Nölting, J., J. de Physique Coll. C6, 41, 2023 (1980).Google Scholar
[6] Hull, S., Rep. Prog. Phys., 67, 12331314 (2004).Google Scholar
[7] Lidiard, A.B., in “Crystals with the Fluorite Structure”, Hayes, W. (ed.), Clarendon Press, Oxford, 101184 (1974).Google Scholar
[8] Dickens, M.H., Hayes, W., Hutchings, M.T. and Kleppmann, W.G., J. Phys. C: Solid State Phys., 12, 1725 (1979).Google Scholar
[9] Hutchings, M.T., Clausen, K., Dickens, M.H., Hayes, W., Kjems, J.K., Schnabel, P.G. and Smith, C., J. Phys. C: Solid State Phys., 17, 39033940 (1984).Google Scholar
[10] Catlow, C.R.A. and Hayes, W., J. Phys. C: Solid State Phys., 15, L9–L13 (1982).Google Scholar
[11] Farley, T.W.D., Hayes, W., Hull, S., Hutchings, M.T. and Vrtis, M., J. Phys.: Condens. Matter, 3, 47614781 (1991).Google Scholar
[12] Ralph, J. and Hyland, G.J., J. Nucl. Mater., 132, 7679 (1985).Google Scholar
[13] Ishihara, T., Sammes, N.M. and Yamamoto, O., in “High temperature solid oxide fuel cells. Fundamentals, design and applications”, Singhal, S.C. and Kendall, K. (eds.), Elsevier, Oxford, (2003).Google Scholar
[14] Hannon, A.C., Nulc. Instrum. Methods A, 551, 88107 (2005).Google Scholar
[15] Réau, J.-M. and Grannec, J., in “Inorganic Solid Fluorides: Chemistry and Physics”, Hagenmuller, P. (ed.), Academic Press Inc., London, 423467 (1985).Google Scholar
[16] Réau, J.-M., Lucat, C., Portier, J., Hagenmuller, P., Cot, L. and Vilminot, S., Mater. Res. Bull., 13, 877882 (1978).Google Scholar
[17] Kanno, R., Ohno, K., Izumi, H., Kawamoto, Y., Kamiyama, T., Asano, H. and Izumi, F., Solid State Ionics, 70–71, 253258 (1994).Google Scholar
[18] Castiglione, M., Madden, P.A., Berastegui, P. and Hull, S., J. Phys.: Condens. Matter, 17, 845861 (2005).Google Scholar
[19] Scott, H.G., J. Mater. Sci., 10, 15271535 (1975).Google Scholar
[20] Subbarao, E.C. and Ramakrishnan, T.V., in “Fast Ion Transport in Solids”, Vashishta, P., Mundy, J.N. and Shenoy, G.K. (eds.), Elsevier North Holland Inc., New York, 653656 (1979).Google Scholar
[21] Goff, J.P., Hayes, W., Hull, S., Hutchings, M.T. and Clausen, K.N., Phys. Rev. B, 59, 1420214219 (1999).Google Scholar
[22] Harwig, H.A. and Gerards, A.G., J. Solid State Chem., 26, 265274 (1978).Google Scholar
[23] Shuk, P., Wienhöfer, H.-D., Guth, U., Göpel, W. and Greenblatt, M., Solid State Ionics, 89, 179196 (1996).Google Scholar
[24] Gattow, G. and Schroder, H., Anorg, Z.. Allg. Chem., 318, 176189 (1962).Google Scholar
[25] Battle, P.D., Catlow, C.R.A., Drennan, J. and Murray, A.D., J. Phys. C: Solid State Phys., 16, L561566 (1983).Google Scholar
[26] Mohn, C.E., Stølen, S., Norberg, S.T. and Hull, S., Phys. Rev. Lett., submitted.Google Scholar
[27] Carlsson, J.M., Hellsing, B., Domingos, H.S. and Bristowe, P.D., Phys. Rev. B, 65, 205122 (2002).Google Scholar
[28] Walsh, A., Watson, G.W., Payne, D.J., Edgell, R.G., Guo, J.H., Glans, P.A., Learmonth, T. and Smith, K.E., Phys. Rev. B, 73, art. 235104 (2006).Google Scholar
[29] Sivia, D.S. and David, W.I.F., J. Phys. Chem. Solids, 62, 21192127 (2001).Google Scholar
[30] Hull, S., Keen, D.A., Sivia, D.S. and Berastegui, P., J. Solid State Chem., 165, 363371 (2002).Google Scholar
[31] McGreevy, R.L., J. Phys.: Condens. Matter, 13, R877–R913 (2001).Google Scholar
[32] Tucker, M.G., Keen, D.A., Dove, M.T., Goodwin, A.L. and Hui, Q., J. Phys.: Condens. Matter, 19, 335218 (2007).Google Scholar
[33] Norberg, S.T., Tucker, M.G. and Hull, S., J. Appl. Cryst., submitted.Google Scholar
[34] Hull, S. and Keen, D.A., Phys. Rev. B, 58, 1483714844 (1998).Google Scholar
[35] Hull, S., Keen, D.A., Done, R., Pike, T. and Gardner, N.J.G., Nucl. Instrum. Meth. A, 385, 354360 (1997).Google Scholar
[36] Engin, T.E., Powell, A.V., Haynes, R., Chowdhury, M.A.H., Goodway, C.M., Done, R., Kirichek, O. and Hull, S., Rev. Sci. Instrum., 79, art. 095104 (2008).Google Scholar