Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:35:48.681Z Has data issue: false hasContentIssue false

Fluorescent Rosette Nanotubes from the C-analogue of the Guanine–Cytosine (G∧C) Motif

Published online by Cambridge University Press:  25 May 2015

Belete Legesse
Affiliation:
Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, U.S.A.
Jae-Young Cho
Affiliation:
National Institute for Nanotechnology (NINT-NRC), 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
Rachel L. Beingessner
Affiliation:
National Institute for Nanotechnology (NINT-NRC), 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
Takeshi Yamazaki
Affiliation:
Vancouver Prostate Centre, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada.
Hicham Fenniri*
Affiliation:
Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, U.S.A.
Get access

Abstract

Rosette nanotubes (RNTs) are tubular architectures generated through the hierarchical self-assembly of the guanine-cytosine (G∧C) motif 1 or 2 (Figure 1). Motif 2 differs from 1 by the substitution at the N-atom in the G-ring with a C-atom as shown in red. In this paper, we prepare a new tricyclic G∧C base 3 from a functionalized derivative of 2 and demonstrate its self-assembly into fluorescent helical RNTs in N,N-dimethylformamide (DMF). The self-assembly and fluorescent properties of RNTs 3 were established using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-visible spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, G., Pharmaceut Anal Acta 3: e136. doi:10.4172/2153-2435.1000e136.CrossRefGoogle Scholar
Liu, Z., Robinson, J. T., Tabakmanb, S. M., Yanga, K., and Dai, H., Mater. Today 14, 316 (2011).CrossRefGoogle Scholar
Iverson, N. M., Barone, P. W., Shandell, M., Trudel, L. J., Sen, S., Sen, F., Ivanov, V., Atolia, E., Farias, E., McNicholas, T. P., Reuel, N., Parry, N. M. A., Wogan, G. N. and Strano, M. S., Nat. Nanotechnol 8, 873 (2013).CrossRefGoogle Scholar
Vardharajula, S., Ali, S.Z, Tiwari, P.M, Eroğlu, E., Vig, K., Dennis, V.A, Singh, S.R, Int. J. Nanomedicine 7, 5361 (2012).Google Scholar
Hariri, A. A., Hamblin, G. D., Gidi, Y., Sleiman, H. F. and Cosa, G., Nature Chem. 7, 295 (2015).CrossRefGoogle Scholar
Zhou, Y., Kogiso, M., He, C., Shimizu, Y., Koshizaki, N., and Shimizu, T., Adv. Mater. 19, 1055 (2007).CrossRefGoogle Scholar
Montenegro, J., Vázquez-Vázquez, C., Kalinin, A., Geckeler, K. E. and Granja, J. R., J. Am. Chem. Soc. 136, 2484 (2014).CrossRefGoogle Scholar
Beingessner, R. L., Deng, B.-L., Fanwick, P. E. and Fenniri, H., J. Org. Chem. 73, 931 (2008).CrossRefGoogle Scholar
Borzsonyi, G., Beingessner, R. L., Yamazaki, T., Cho, J. Y., Myles, A. J., Malac, M., Egerton, R., Kawasaki, M., Ishizuka, K., Kovalenko, A. and Fenniri, H., J. Am. Chem. Soc. 132, 15136 (2010).CrossRefGoogle Scholar
Borzsonyi, G., Johnson, R. S., Myles, A. J., Cho, J.-Y., Yamazaki, T., Beingessner, R. L., Kovalenko, A. and Fenniri, H., Chem. Commun. 46, 6527 (2010).CrossRefGoogle Scholar
Borzsonyi, G., Alsbaiee, A., Beingessner, R. L. and Fenniri, H., J. Org. Chem. 75, 7233 (2010).CrossRefGoogle Scholar
Chhabra, R., Moralez, J. G., Raez, J., Yamazaki, T., Cho, J.-Y., Myles, A. J., Kovalenko, A. and Fenniri, H., J. Am. Chem. Soc. 132, 32 (2009).CrossRefGoogle Scholar
Tikhomirov, G., Oderinde, M., Makeiff, D., Mansouri, A., Lu, W., Heirtzler, F., Kingsley, S., Kwok, D. Y. and Fenniri, H., J. Org. Chem. 73, 4248 (2008).CrossRefGoogle Scholar
Deng, B.-L., Beingessner, R. L., Johnson, R. S., Girdhar, N. K., Danumag, C., Yamazaki, T., and Fenniri, H., Macromolecules 45, 7157 (2012).CrossRefGoogle Scholar
Alsbaiee, A., St. Jules, M., Beingessner, R. L., Yamazaki, T., Cho, J. Y. and Fenniri, H., Tet. Lett. 53, 1645 (2012).CrossRefGoogle Scholar
Hemraz, U. D., El-Bakkari, M., Yamazaki, T., Cho, J.-Y., Beingessner, R. L. and Fenniri, H., Nanoscale 6, 9421 (2014).CrossRefGoogle Scholar
Beingessner, R. L., Diaz, J. A., Hemraz, U. D. and Fenniri, H., Tet. Lett. 52, 661 (2011).CrossRefGoogle Scholar
Raez, J., Moralez, J. G. and Fenniri, H., J. Am. Chem. Soc. 126, 16298 (2004).CrossRefGoogle Scholar
Yamazaki, T., Fenniri, H. and Kovalenko, A., ChemPhysChem 11, 361 (2010).CrossRefGoogle Scholar
Johnson, R. S., Yamazaki, T., Kovalenko, A. and Fenniri, H., J. Am. Chem. Soc. 129, 5735 (2007).CrossRefGoogle Scholar
Shuai, L., Parthasarathy, V., Cho, J.-Y., Yamazaki, T., Makeiff, D. A., Beingessner, R. L. and Fenniri, H., Mater. Res. Soc. Symp. Proc. 1737, mrsf14-1737-u01-04 (2015).Google Scholar
Alsbaiee, A., El-Bakkari, M. and Fenniri, H., Mater. Res. Soc. Symp. Proc. 1316, mrsf10-1316-qq12-18 (2011).Google Scholar
El-Bakkari, M., Beingessner, R. L., Alshamsan, A., Cho, J.-Y. and Fenniri, H., Mater. Res. Soc. Symp. Proc. 1316, mrsf10-1316-qq12-16 (2011).Google Scholar
Alshamsan, A., El-Bakkari, M. and Fenniri, H., Mater. Res. Soc. Symp. Proc. 1316, mrsf10-1316-qq09-36 (2011).Google Scholar
Hemraz, U. D. and Fenniri, H., Mater. Res. Soc. Symp. Proc. 1057, 1057-II05-37 (2008).Google Scholar
Fenniri, H., Mathivanan, P. J., Vidal, K. L., Sherman, D. M., Hallenga, K. J., Wood, K. L. and Stowell, J. G., J. Am. Chem. Soc. 123, 3854 (2001).CrossRefGoogle Scholar
Fenniri, H., Deng, B.-L. and Ribbe, A. E., J. Am. Chem. Soc. 124, 11064 (2002).CrossRefGoogle Scholar
Fenniri, H., Deng, B.-L., Ribbe, A. E., Hallenga, K., Jacob, J. and Thiyagarajan, P., Proc. Natl. Acad. Sci. U.S.A. 99, 6487 (2002).CrossRefGoogle Scholar
Zhang, L., Rakotondradany, F., Myles, A. J. and Fenniri, H., Biomaterials 30, 1309 (2009).CrossRefGoogle Scholar
Meng, X., Stout, D. A., Sun, L., Beingessner, R. L., Fenniri, H. and Webster, T. J., J. Biomed Mater Res Part A, 101A, 1095 (2012).CrossRefGoogle Scholar
Zhang, L., Hemraz, U. D., Fenniri, H. and Webster, T. J., J. Biomed. Mater. Res. 95A, 550 (2010).CrossRefGoogle Scholar
Chun, A. L., Moralez, J. G., Fenniri, H. and Webster, T. J., Nanotechnology 15, S234 (2004).CrossRefGoogle Scholar
Zhang, L., Rodriguez, J., Raez, J., Myles, A. J., Fenniri, H. and Webster, T. J., Nanotechnology 20, 175101 (2009).CrossRefGoogle Scholar
Chen, Y., Song, S., Yan, Z., Fenniri, H. and Webster, T. J., Int. J. Nanomed. 6, 1035 (2011).Google Scholar
Journeay, W. S., Suri, S. S., Moralez, J. G., Fenniri, H. and Singh, B., Small 5, 1446 (2009).CrossRefGoogle Scholar
Zhang, L., Ramsaywack, S., Fenniri, H. and Webster, T. J., Tissue Engineering Part A 14, 1353 (2008).CrossRefGoogle Scholar
Singh, S. S., Mills, S., Aulakh, G. K., Rakotondradany, F., Fenniri, H. and Singh, B., Int. J. Nanomed. 6, 3113 (2011).CrossRefGoogle Scholar
Childs, A., Hemraz, U. D., Castro, N. J., Fenniri, H. and Zhang, L. G., Biomed. Mater. 8, 065003 (2013).CrossRefGoogle Scholar
Le, M. H. A., Suri, S. S., Rakotondradany, F., Fenniri, H. and Singh, B., Vet. Res. 41, 75 (2010).CrossRefGoogle Scholar
Chun, A. L., Moralez, J. G., Webster, T. J. and Fenniri, H., Biomaterials 26, 7304 (2005).CrossRefGoogle Scholar
Fine, E., Zhang, L., Fenniri, H. and Webster, T. J., Int. J. Nanomed. 4, 91 (2009).Google Scholar
Journeay, W. S., Singh, S. S., Moralez, J. G., Fenniri, H. and Singh, B., Int. J. Nanomed. 3, 373 (2008).Google Scholar
Durmus, A., Gunbas, G., Farmer, S., Olmstead, M., Mascal, M., Legesse, B., Cho, J.-Y., Beingessner, R. L., Yamazaki, T. and Fenniri, H., J. Org. Chem. 78, 11421 (2013).CrossRefGoogle Scholar